-
Previous Article
Complex systems with impulsive effects and logical dynamics: A brief overview
- DCDS-S Home
- This Issue
-
Next Article
Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions
Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel
1. | Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India |
2. | Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa |
The concept of differential operator with variable order has attracted attention of many scholars due to their abilities to capture more complexities like anomalous diffusion. While these differential operators are useful in real life, they can only be handled numerically. In this work, we used a newly introduced variable order differential operators that can be used analytically and numerically, has connection with all integral transform to model some interesting mathematical models arising in electromagnetic wave in plasma and dielectric. The differential operators used are non-singular and have the crossover properties therefore the models studied can explain the propagation of the wave in two different layers which cannot be achieved with those differential variable order operators with singular kernels. Using the Laplace transform and its connection with the new differential operator, we derive the exact solution of the models under investigation.
References:
[1] |
B. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 547-551. Google Scholar |
[2] |
B. S. T. Alkahtani, I. Koca and A. Atangana,
A novel approach of variable order derivative: Theory and methods, J. Nonlinear Sci. Appl., 9 (2016), 4867-4876.
doi: 10.22436/jnsa.009.06.122. |
[3] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[4] |
A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. Google Scholar |
[5] |
A. Atangana and I. Koca, New direction in fractional differentiation, Math. Nat. Sci., 1 (2017), 18-25. Google Scholar |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[7] |
M. Caputo and M. Fabrizio,
On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043-3052.
doi: 10.1007/s11012-017-0652-y. |
[8] | W. C. Chew, Waves and Flelds in Inhomogenous Medias, IEEE Press, New York, 1995. Google Scholar |
[9] |
T.-C. Chiu and F. Erdogan,
One-dimensional wave propagation in a functionally graded elastic medium, J. Sound vib., 222 (1999), 453-487.
doi: 10.1006/jsvi.1998.2065. |
[10] |
M. J. Gander, L. Halpern and F. Nata,
Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., 41 (2003), 1643-1681.
doi: 10.1137/S003614290139559X. |
[11] |
J. F. Gómez-Aguilar and D. Baleanu, Fractional transmission line with losses, Zeitschrift für Naturforschung A, 69 (2015), 539-546. Google Scholar |
[12] |
J. F. Gómez-Aguilar, J. J. Rosales-García, J. J. Bernal-alvarado, T. Córdova-fraga and R. Gujmán-cabrera, Fractional mechanical oscillators, Rev. Mex. Fis., 58 (2012), 348-352. Google Scholar |
[13] |
J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragoza, L. J. Morales-Mendoza and M. González-Lee, Universal character of the fractional space-time electromagnetic waves in dielectric media, J. Electromagnet. Wave, 29 (2015), 727-740. Google Scholar |
[14] |
J. Hristov,
Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in Fractional Calculus, Curr. Dev. Math. Sci., Bentham Sci. Publ., Sharjah, 1 (2018), 269-341.
|
[15] |
D. C. Labora, J. J. Nieto and R. Rodriguez-Lopez,
Is it possible to construct a fractional derivative such that the index law holds?, Progr. Fract. Differ. Appl., 4 (2018), 1-3.
doi: 10.18576/pfda/040101. |
[16] |
T. R. Prabhakar,
A singular integral equation with a genearlized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
|
[17] |
M. B. Riaz, N. A. Asif, A. Atangana and M. I. Asjad,
Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 645-664.
|
[18] |
T. H. Stix, Waves in Plasmas, American Institute of Physics, 1992. Google Scholar |
[19] |
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 52.
doi: 10.3389/fphy.2017.00052. |
show all references
References:
[1] |
B. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 547-551. Google Scholar |
[2] |
B. S. T. Alkahtani, I. Koca and A. Atangana,
A novel approach of variable order derivative: Theory and methods, J. Nonlinear Sci. Appl., 9 (2016), 4867-4876.
doi: 10.22436/jnsa.009.06.122. |
[3] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[4] |
A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. Google Scholar |
[5] |
A. Atangana and I. Koca, New direction in fractional differentiation, Math. Nat. Sci., 1 (2017), 18-25. Google Scholar |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[7] |
M. Caputo and M. Fabrizio,
On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043-3052.
doi: 10.1007/s11012-017-0652-y. |
[8] | W. C. Chew, Waves and Flelds in Inhomogenous Medias, IEEE Press, New York, 1995. Google Scholar |
[9] |
T.-C. Chiu and F. Erdogan,
One-dimensional wave propagation in a functionally graded elastic medium, J. Sound vib., 222 (1999), 453-487.
doi: 10.1006/jsvi.1998.2065. |
[10] |
M. J. Gander, L. Halpern and F. Nata,
Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., 41 (2003), 1643-1681.
doi: 10.1137/S003614290139559X. |
[11] |
J. F. Gómez-Aguilar and D. Baleanu, Fractional transmission line with losses, Zeitschrift für Naturforschung A, 69 (2015), 539-546. Google Scholar |
[12] |
J. F. Gómez-Aguilar, J. J. Rosales-García, J. J. Bernal-alvarado, T. Córdova-fraga and R. Gujmán-cabrera, Fractional mechanical oscillators, Rev. Mex. Fis., 58 (2012), 348-352. Google Scholar |
[13] |
J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragoza, L. J. Morales-Mendoza and M. González-Lee, Universal character of the fractional space-time electromagnetic waves in dielectric media, J. Electromagnet. Wave, 29 (2015), 727-740. Google Scholar |
[14] |
J. Hristov,
Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in Fractional Calculus, Curr. Dev. Math. Sci., Bentham Sci. Publ., Sharjah, 1 (2018), 269-341.
|
[15] |
D. C. Labora, J. J. Nieto and R. Rodriguez-Lopez,
Is it possible to construct a fractional derivative such that the index law holds?, Progr. Fract. Differ. Appl., 4 (2018), 1-3.
doi: 10.18576/pfda/040101. |
[16] |
T. R. Prabhakar,
A singular integral equation with a genearlized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
|
[17] |
M. B. Riaz, N. A. Asif, A. Atangana and M. I. Asjad,
Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 645-664.
|
[18] |
T. H. Stix, Waves in Plasmas, American Institute of Physics, 1992. Google Scholar |
[19] |
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 52.
doi: 10.3389/fphy.2017.00052. |
[1] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[2] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[3] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[4] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[5] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[6] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[7] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[8] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[9] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[10] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[11] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[12] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[13] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[14] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[15] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[16] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[17] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[18] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[19] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[20] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]