-
Previous Article
Existence and regularity results for a singular parabolic equations with degenerate coercivity
- DCDS-S Home
- This Issue
-
Next Article
Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions
Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel
1. | Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India |
2. | Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa |
The concept of differential operator with variable order has attracted attention of many scholars due to their abilities to capture more complexities like anomalous diffusion. While these differential operators are useful in real life, they can only be handled numerically. In this work, we used a newly introduced variable order differential operators that can be used analytically and numerically, has connection with all integral transform to model some interesting mathematical models arising in electromagnetic wave in plasma and dielectric. The differential operators used are non-singular and have the crossover properties therefore the models studied can explain the propagation of the wave in two different layers which cannot be achieved with those differential variable order operators with singular kernels. Using the Laplace transform and its connection with the new differential operator, we derive the exact solution of the models under investigation.
References:
[1] |
B. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 547-551. Google Scholar |
[2] |
B. S. T. Alkahtani, I. Koca and A. Atangana,
A novel approach of variable order derivative: Theory and methods, J. Nonlinear Sci. Appl., 9 (2016), 4867-4876.
doi: 10.22436/jnsa.009.06.122. |
[3] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[4] |
A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. Google Scholar |
[5] |
A. Atangana and I. Koca, New direction in fractional differentiation, Math. Nat. Sci., 1 (2017), 18-25. Google Scholar |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[7] |
M. Caputo and M. Fabrizio,
On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043-3052.
doi: 10.1007/s11012-017-0652-y. |
[8] | W. C. Chew, Waves and Flelds in Inhomogenous Medias, IEEE Press, New York, 1995. Google Scholar |
[9] |
T.-C. Chiu and F. Erdogan,
One-dimensional wave propagation in a functionally graded elastic medium, J. Sound vib., 222 (1999), 453-487.
doi: 10.1006/jsvi.1998.2065. |
[10] |
M. J. Gander, L. Halpern and F. Nata,
Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., 41 (2003), 1643-1681.
doi: 10.1137/S003614290139559X. |
[11] |
J. F. Gómez-Aguilar and D. Baleanu, Fractional transmission line with losses, Zeitschrift für Naturforschung A, 69 (2015), 539-546. Google Scholar |
[12] |
J. F. Gómez-Aguilar, J. J. Rosales-García, J. J. Bernal-alvarado, T. Córdova-fraga and R. Gujmán-cabrera, Fractional mechanical oscillators, Rev. Mex. Fis., 58 (2012), 348-352. Google Scholar |
[13] |
J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragoza, L. J. Morales-Mendoza and M. González-Lee, Universal character of the fractional space-time electromagnetic waves in dielectric media, J. Electromagnet. Wave, 29 (2015), 727-740. Google Scholar |
[14] |
J. Hristov,
Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in Fractional Calculus, Curr. Dev. Math. Sci., Bentham Sci. Publ., Sharjah, 1 (2018), 269-341.
|
[15] |
D. C. Labora, J. J. Nieto and R. Rodriguez-Lopez,
Is it possible to construct a fractional derivative such that the index law holds?, Progr. Fract. Differ. Appl., 4 (2018), 1-3.
doi: 10.18576/pfda/040101. |
[16] |
T. R. Prabhakar,
A singular integral equation with a genearlized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
|
[17] |
M. B. Riaz, N. A. Asif, A. Atangana and M. I. Asjad,
Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 645-664.
|
[18] |
T. H. Stix, Waves in Plasmas, American Institute of Physics, 1992. Google Scholar |
[19] |
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 52.
doi: 10.3389/fphy.2017.00052. |
show all references
References:
[1] |
B. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 547-551. Google Scholar |
[2] |
B. S. T. Alkahtani, I. Koca and A. Atangana,
A novel approach of variable order derivative: Theory and methods, J. Nonlinear Sci. Appl., 9 (2016), 4867-4876.
doi: 10.22436/jnsa.009.06.122. |
[3] |
A. Atangana and D. Baleanu,
New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A. |
[4] |
A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 166. Google Scholar |
[5] |
A. Atangana and I. Koca, New direction in fractional differentiation, Math. Nat. Sci., 1 (2017), 18-25. Google Scholar |
[6] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[7] |
M. Caputo and M. Fabrizio,
On the notion of fractional derivative and applications to the hysteresis phenomena, Meccanica, 52 (2017), 3043-3052.
doi: 10.1007/s11012-017-0652-y. |
[8] | W. C. Chew, Waves and Flelds in Inhomogenous Medias, IEEE Press, New York, 1995. Google Scholar |
[9] |
T.-C. Chiu and F. Erdogan,
One-dimensional wave propagation in a functionally graded elastic medium, J. Sound vib., 222 (1999), 453-487.
doi: 10.1006/jsvi.1998.2065. |
[10] |
M. J. Gander, L. Halpern and F. Nata,
Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., 41 (2003), 1643-1681.
doi: 10.1137/S003614290139559X. |
[11] |
J. F. Gómez-Aguilar and D. Baleanu, Fractional transmission line with losses, Zeitschrift für Naturforschung A, 69 (2015), 539-546. Google Scholar |
[12] |
J. F. Gómez-Aguilar, J. J. Rosales-García, J. J. Bernal-alvarado, T. Córdova-fraga and R. Gujmán-cabrera, Fractional mechanical oscillators, Rev. Mex. Fis., 58 (2012), 348-352. Google Scholar |
[13] |
J. F. Gómez-Aguilar, H. Yépez-Martínez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragoza, L. J. Morales-Mendoza and M. González-Lee, Universal character of the fractional space-time electromagnetic waves in dielectric media, J. Electromagnet. Wave, 29 (2015), 727-740. Google Scholar |
[14] |
J. Hristov,
Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in Fractional Calculus, Curr. Dev. Math. Sci., Bentham Sci. Publ., Sharjah, 1 (2018), 269-341.
|
[15] |
D. C. Labora, J. J. Nieto and R. Rodriguez-Lopez,
Is it possible to construct a fractional derivative such that the index law holds?, Progr. Fract. Differ. Appl., 4 (2018), 1-3.
doi: 10.18576/pfda/040101. |
[16] |
T. R. Prabhakar,
A singular integral equation with a genearlized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
|
[17] |
M. B. Riaz, N. A. Asif, A. Atangana and M. I. Asjad,
Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 645-664.
|
[18] |
T. H. Stix, Waves in Plasmas, American Institute of Physics, 1992. Google Scholar |
[19] |
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Front. Phys., 5 (2017), 52.
doi: 10.3389/fphy.2017.00052. |
[1] |
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058 |
[2] |
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033 |
[3] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2019 doi: 10.3934/dcdss.2020171 |
[4] |
Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050 |
[5] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031 |
[6] |
Behzad Ghanbari, Devendra Kumar, Jagdev Singh. An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020428 |
[7] |
Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029 |
[8] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039 |
[9] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 |
[10] |
Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 |
[11] |
Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 |
[12] |
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042 |
[13] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[14] |
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657 |
[15] |
Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020427 |
[16] |
D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843 |
[17] |
Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041 |
[18] |
Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020430 |
[19] |
Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125. |
[20] |
Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021011 |
2019 Impact Factor: 1.233
Tools
Article outline
[Back to Top]