# American Institute of Mathematical Sciences

## A novel model for the contamination of a system of three artificial lakes

 Muğla Sıtkı Koçman University, Muğla, 48300, Turkey

Received  April 2019 Revised  May 2019 Published  December 2019

In this study, a new model has been developed to monitor the contamination in connected three lakes. The model has been motivated by two biological models, i.e. cell compartment model and lake pollution model. Haar wavelet collocation method has been proposed for the numerical solutions of the model containing a system of three linear differential equations. In addition to the solutions of the system, convergence analysis has been briefly given for the proposed method. The contamination in each lake has been investigated by considering three different pollutant input cases, namely impulse imposed pollutant source, exponentially decaying imposed pollutant source, and periodic imposed pollutant source. Each case has been illustrated with a numerical example and results are compared with the exact ones. Regarding the results in each case it has been seen that, Haar wavelet collocation method is an efficient algorithm to monitor the contamination of a system of lakes problem.

Citation: Veysel Fuat Hatipoğlu. A novel model for the contamination of a system of three artificial lakes. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020176
##### References:

show all references

##### References:
Illustration of the interconnected Lakes 1, 2, 3, and flow $F_{12}$, $F_{13}$, $F_{21}$, $F_{23}$, $F_{31}$, $F_{32}$
Graphical representation of approximate and exact solutions of Example 4.1 for $m = 8$ of (a) the function $u_1(t)$ (pollution in Lake 1), (b) the function $u_2(t)$ (pollution in Lake 2), and (c) the function $u_3(t)$ (pollution in Lake 3)
Graphical representation of approximate and exact solutions of Example 4.1 for $m = 256$ of (a) the function $u_1(t)$ (pollution in Lake 1), (b) the function $u_2(t)$ (pollution in Lake 2), and (c) the function $u_3(t)$ (pollution in Lake 3)
Graphical representation of approximate and exact solutions of Example 4.2 for $m = 8$ of (a) the function $u_1(t)$ (pollution in Lake 1), (b) the function $u_2(t)$ (pollution in Lake 2), and (c) the function $u_3(t)$ (pollution in Lake 3)
Graphical representation of approximate and exact solutions of Example 4.2 for $m = 256$ of (a) the function $u_1(t)$ (pollution in Lake 1), (b) the function $u_2(t)$ (pollution in Lake 2), and (c) the function $u_3(t)$ (pollution in Lake 3)
Graphical representation of approximate and exact solutions of Example 4.3 for $m = 8$ of (a) the function $u_1(t)$ (pollution in Lake 1), (b) the function $u_2(t)$ (pollution in Lake 2), and (c) the function $u_3(t)$ (pollution in Lake 3)
Graphical representation of approximate and exact solutions of Example 4.3 for $m = 256$ of (a) the function $u_1(t)$ (pollution in Lake 1), (b) the function $u_2(t)$ (pollution in Lake 2), and (c) the function $u_3(t)$ (pollution in Lake 3)
Numerical results for the case of the impulse input imposed pollutant source for $m = 8$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 22.9684 3.00002 0.0164893 0.0000103978 0.0151401 $5.40755\times 10^{-6}$ 0.4 41.8738 2.00003 0.0657719 0.0000194067 0.0604641 0.0000101545 0.6 57.7167 1.99995 0.147536 0.0000303268 0.135809 0.0000159672 0.8 76.4975 2.99994 0.26148 0.0000389783 0.241017 0.0000206502 1 99.2168 0.0000745642 0.407297 0.0000486384 0.375927 0.0000259258
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 22.9684 3.00002 0.0164893 0.0000103978 0.0151401 $5.40755\times 10^{-6}$ 0.4 41.8738 2.00003 0.0657719 0.0000194067 0.0604641 0.0000101545 0.6 57.7167 1.99995 0.147536 0.0000303268 0.135809 0.0000159672 0.8 76.4975 2.99994 0.26148 0.0000389783 0.241017 0.0000206502 1 99.2168 0.0000745642 0.407297 0.0000486384 0.375927 0.0000259258
Numerical results for the case of the impulse input imposed pollutant source for $m = 256$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 20.0309 0.0625 0.0164996 $9.84289\times 10^{-9}$ 0.0151455 $5.11793\times 10^{-9}$ 0.4 39.78 0.09375 0.0657913 $1.95302\times 10^{-8}$ 0.0604743 $1.02186\times 10^{-8}$ 0.6 59.8104 0.09375 0.147566 $2.90455\times 10^{-8}$ 0.135825 $1.52923\times 10^{-8}$ 0.8 79.4349 0.0624999 0.261519 $3.83733\times 10^{-8}$ 0.241038 $2.03287\times 10^{-8}$ 1 99.2167 $7.28163\times 10^{-8}$ 0.407345 $4.74981\times 10^{-8}$ 0.375953 $2.53183\times 10^{-8}$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 20.0309 0.0625 0.0164996 $9.84289\times 10^{-9}$ 0.0151455 $5.11793\times 10^{-9}$ 0.4 39.78 0.09375 0.0657913 $1.95302\times 10^{-8}$ 0.0604743 $1.02186\times 10^{-8}$ 0.6 59.8104 0.09375 0.147566 $2.90455\times 10^{-8}$ 0.135825 $1.52923\times 10^{-8}$ 0.8 79.4349 0.0624999 0.261519 $3.83733\times 10^{-8}$ 0.241038 $2.03287\times 10^{-8}$ 1 99.2167 $7.28163\times 10^{-8}$ 0.407345 $4.74981\times 10^{-8}$ 0.375953 $2.53183\times 10^{-8}$
Numerical results for the case of the pollutant source is exponential decaying for $m = 8$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 21.1544 3.89703 0.0158795 0.00284471 0.0145808 0.00261002 0.4 21.6476 2.10907 0.0445744 0.00499602 0.0409975 0.00459647 0.6 15.2365 4.55673 0.0747691 0.00702142 0.0688998 0.00647562 0.8 13.554 6.22018 0.104924 0.00900802 0.0968779 0.00832662 1 18.4945 1.2239 0.134828 0.0109746 0.124735 0.0101665
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 21.1544 3.89703 0.0158795 0.00284471 0.0145808 0.00261002 0.4 21.6476 2.10907 0.0445744 0.00499602 0.0409975 0.00459647 0.6 15.2365 4.55673 0.0747691 0.00702142 0.0688998 0.00647562 0.8 13.554 6.22018 0.104924 0.00900802 0.0968779 0.00832662 1 18.4945 1.2239 0.134828 0.0109746 0.124735 0.0101665
Numerical results for the case of the pollutant source is exponential decaying for $m = 256$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 17.3813 0.123881 0.0187212 $3.00622\times 10^{-6}$ 0.0171881 $2.75854\times 10^{-6}$ 0.4 19.3498 0.188703 0.0495652 $5.197\times 10^{-6}$ 0.0455892 $4.78187\times 10^{-6}$ 0.6 19.9795 0.18621 0.0817833 $7.25942\times 10^{-6}$ 0.0753687 $6.69578\times 10^{-6}$ 0.8 19.6479 0.126229 0.113923 $9.28787\times 10^{-6}$ 0.105196 $8.58611\times 10^{-6}$ 1 19.7171 0.00124969 0.145791 0.0000112953 0.134891 0.0000104645
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 17.3813 0.123881 0.0187212 $3.00622\times 10^{-6}$ 0.0171881 $2.75854\times 10^{-6}$ 0.4 19.3498 0.188703 0.0495652 $5.197\times 10^{-6}$ 0.0455892 $4.78187\times 10^{-6}$ 0.6 19.9795 0.18621 0.0817833 $7.25942\times 10^{-6}$ 0.0753687 $6.69578\times 10^{-6}$ 0.8 19.6479 0.126229 0.113923 $9.28787\times 10^{-6}$ 0.105196 $8.58611\times 10^{-6}$ 1 19.7171 0.00124969 0.145791 0.0000112953 0.134891 0.0000104645
Numerical results for the case of the periodic imposed pollutant source for $m = 8$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 0.249602 0.0300057 0.000178068 $2.08508\times 10^{-6}$ 0.000163497 $1.96112\times 10^{-6}$ 0.4 0.497558 0.0200493 0.000748935 $3.8634\times 10^{-6}$ 0.000688452 $3.6487\times 10^{-6}$ 0.6 0.751366 0.0199072 0.0017721 $5.90008\times 10^{-6}$ 0.001631 $5.59805\times 10^{-6}$ 0.8 1.06715 0.0298126 0.00330008 $7.43142\times 10^{-6}$ 0.00304105 $7.08325\times 10^{-6}$ 1 1.44966 0.000281844 0.00537877 $8.97633\times 10^{-6}$ 0.00496263 $8.59806\times 10^{-6}$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 0.249602 0.0300057 0.000178068 $2.08508\times 10^{-6}$ 0.000163497 $1.96112\times 10^{-6}$ 0.4 0.497558 0.0200493 0.000748935 $3.8634\times 10^{-6}$ 0.000688452 $3.6487\times 10^{-6}$ 0.6 0.751366 0.0199072 0.0017721 $5.90008\times 10^{-6}$ 0.001631 $5.59805\times 10^{-6}$ 0.8 1.06715 0.0298126 0.00330008 $7.43142\times 10^{-6}$ 0.00304105 $7.08325\times 10^{-6}$ 1 1.44966 0.000281844 0.00537877 $8.97633\times 10^{-6}$ 0.00496263 $8.59806\times 10^{-6}$
Numerical results for the case of the periodic imposed pollutant source for $m = 256$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 0.220221 0.000625009 0.000175985 $1.97563\times 10^{-9}$ 0.000161538 $1.8579\times 10^{-9}$ 0.4 0.476572 0.000937457 0.000745076 $3.87845\times 10^{-9}$ 0.000684807 $3.66306\times 10^{-9}$ 0.6 0.77221 0.0009376 0.00176621 $5.66633\times 10^{-9}$ 0.00162541 $5.37572\times 10^{-9}$ 0.8 1.09634 0.000624822 0.00329265 $7.30236\times 10^{-9}$ 0.00303397 $6.96049\times 10^{-9}$ 1 1.44937 $2.75122\times 10^{-7}$ 0.0053698 $8.75757\times 10^{-9}$ 0.00495404 $8.38886\times 10^{-9}$
 $t$ App. sol. of $u_1$ Abs. error in $u_1$ App. sol. of $u_2$ Abs. error in $u_2$ App. sol. of $u_3$ Abs. error in $u_3$ 0 0 0 0 0 0 0 0.2 0.220221 0.000625009 0.000175985 $1.97563\times 10^{-9}$ 0.000161538 $1.8579\times 10^{-9}$ 0.4 0.476572 0.000937457 0.000745076 $3.87845\times 10^{-9}$ 0.000684807 $3.66306\times 10^{-9}$ 0.6 0.77221 0.0009376 0.00176621 $5.66633\times 10^{-9}$ 0.00162541 $5.37572\times 10^{-9}$ 0.8 1.09634 0.000624822 0.00329265 $7.30236\times 10^{-9}$ 0.00303397 $6.96049\times 10^{-9}$ 1 1.44937 $2.75122\times 10^{-7}$ 0.0053698 $8.75757\times 10^{-9}$ 0.00495404 $8.38886\times 10^{-9}$
 [1] Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3141-3161. doi: 10.3934/dcds.2020401 [2] Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 [3] Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129 [4] Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025 [5] Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013 [6] Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 [7] Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008 [8] Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037 [9] Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032 [10] Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036 [11] Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026 [12] Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014 [13] Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 [14] Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049 [15] Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 [16] Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 [17] Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 [18] Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092 [19] Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 [20] Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables