doi: 10.3934/dcdss.2020177

Bounded perturbation for evolution equations with a parameter & application to population dynamics

Department of Mathematical Sciences, University of South Africa, Florida, 0003 South Africa

* Corresponding author: franckemile2006@yahoo.ca

Received  April 2019 Revised  May 2019 Published  December 2019

Fund Project: This work was partially supported by the grant No: 105932 from the National Research Foundation (NRF) of South Africa

Evolution equations using derivatives of fractional order like Caputo's derivative or Riemann-Liouville's derivative have been intensively analyzed in numerous works. But the classical bounded perturbation theorem has been proven not to be in general true for these models, especially for solution operators of evolution equations with fractional order derivative $ \alpha $ less than $ 1 $ ($ 0<\alpha<1 $), as shown by the example in the next section. This paper proposes an alternative way of dealing with this issue. We make use of the conventional time derivative with a new parameter to show the perturbations by bounded linear operators for linear evolution equations when the derivative order is less than one. The new parameter which happens to be fractional, characterizes the so-called $ \beta $-derivative. Its fractional order parameter allows the use of concepts like revamped time to provide a relation between both strongly continuous two-parameter solution operators involved in the perturbation process. To validate the theory, we use an application to population dynamics and perform some numerical simulations that reveal some consistency with the expected results.

Citation: Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020177
References:
[1] A. Atangana, Derivative with A New Parameter: Theory, Methods and Applications, Elsevier/Academic Press, Amsterdam, 2016.   Google Scholar
[2]

A. Atangana and E. F. Doungmo Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., (2014), Art. 7 pp. doi: 10.1155/2014/107535.  Google Scholar

[3]

E. G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213-230.   Google Scholar

[4]

E. G. Bazhlekova, Perturbation and Approximation Properties for Abstract Evolution Equations of Fractional Order, Research Report RANA 00-05, Eindhoven University of Technology, Eindhoven, 2000. Google Scholar

[5]

D. Brockmann and L. Hufnagel, Front propagation in reaction-superdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Review Lett., 98 (2007), 178301. doi: 10.1103/PhysRevLett.98.178301.  Google Scholar

[6]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent Ⅱ., Geophys. J. R. Ast. Soc., 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[7]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13.   Google Scholar

[8]

W. Desch and W. Schappacher, On relatively bounded perturbations of linear C0-semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 327-341.   Google Scholar

[9]

K. DiethelmN. J. FordA. D. Freed and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), 743-773.  doi: 10.1016/j.cma.2004.06.006.  Google Scholar

[10]

E. F. Doungmo Goufo and A. Atangana, Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control, Discrete and Continuous Dynamical Systems serie S, 13 2020. Google Scholar

[11]

E. F. Doungmo Goufo, Solvability of chaotic fractional systems with 3D four-scroll attractors, Chaos, Solitons & Fractals, 104 (2017), 443-451.  doi: 10.1016/j.chaos.2017.08.038.  Google Scholar

[12]

E. F. Doungmo Goufo, Evolution equations with a parameter and application to transport-convection differential equations, Turkish J. Math., 41 (2017), 636-654.  doi: 10.3906/mat-1603-107.  Google Scholar

[13]

E. F. Doungmo Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554-564.  doi: 10.1515/fca-2015-0034.  Google Scholar

[14]

E. F. Doungmo Goufo and J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, J. Comput. Appl. Math., 339 (2018), 329-342.  doi: 10.1016/j.cam.2017.08.026.  Google Scholar

[15]

K.-J. Engel and R. Nagel, Ne-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[16]

R. Hilfer, Application of Fractional Calculus in Physics, Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[17]

J. Kestin and L. N. Persen, The transfer of heat across a turbulent boundary layer at very high prandtl numbers, Int. J. Heat Mass Transfer, 5 (1962), 355-371.  doi: 10.1016/0017-9310(62)90026-1.  Google Scholar

[18]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar

[19]

D. Lutz, On bounded time-dependent perturbations of operator cosine functions, Aequationes Math., 23 (1981), 197-203.  doi: 10.1007/BF02188032.  Google Scholar

[20]

B. Nagy, On cosine operator functions in Banach spaces, Acta Sci. Math. Szeged, 36 (1974), 281-289.   Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[23]

H. Schlichting, Boundary-Layer Theory, McGraw-Hill Series in Mechanical Engineering McGraw-Hill Book Co., Inc., New York-Toronto-London; Verlag G. Braun, Karlsruhe, 1960.  Google Scholar

[24]

F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Texts in Applied Mathematics, 50. Springer, New York, 2005. doi: 10.1007/0-387-28313-7.  Google Scholar

show all references

References:
[1] A. Atangana, Derivative with A New Parameter: Theory, Methods and Applications, Elsevier/Academic Press, Amsterdam, 2016.   Google Scholar
[2]

A. Atangana and E. F. Doungmo Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., (2014), Art. 7 pp. doi: 10.1155/2014/107535.  Google Scholar

[3]

E. G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213-230.   Google Scholar

[4]

E. G. Bazhlekova, Perturbation and Approximation Properties for Abstract Evolution Equations of Fractional Order, Research Report RANA 00-05, Eindhoven University of Technology, Eindhoven, 2000. Google Scholar

[5]

D. Brockmann and L. Hufnagel, Front propagation in reaction-superdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Review Lett., 98 (2007), 178301. doi: 10.1103/PhysRevLett.98.178301.  Google Scholar

[6]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent Ⅱ., Geophys. J. R. Ast. Soc., 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[7]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13.   Google Scholar

[8]

W. Desch and W. Schappacher, On relatively bounded perturbations of linear C0-semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 327-341.   Google Scholar

[9]

K. DiethelmN. J. FordA. D. Freed and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), 743-773.  doi: 10.1016/j.cma.2004.06.006.  Google Scholar

[10]

E. F. Doungmo Goufo and A. Atangana, Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control, Discrete and Continuous Dynamical Systems serie S, 13 2020. Google Scholar

[11]

E. F. Doungmo Goufo, Solvability of chaotic fractional systems with 3D four-scroll attractors, Chaos, Solitons & Fractals, 104 (2017), 443-451.  doi: 10.1016/j.chaos.2017.08.038.  Google Scholar

[12]

E. F. Doungmo Goufo, Evolution equations with a parameter and application to transport-convection differential equations, Turkish J. Math., 41 (2017), 636-654.  doi: 10.3906/mat-1603-107.  Google Scholar

[13]

E. F. Doungmo Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554-564.  doi: 10.1515/fca-2015-0034.  Google Scholar

[14]

E. F. Doungmo Goufo and J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, J. Comput. Appl. Math., 339 (2018), 329-342.  doi: 10.1016/j.cam.2017.08.026.  Google Scholar

[15]

K.-J. Engel and R. Nagel, Ne-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[16]

R. Hilfer, Application of Fractional Calculus in Physics, Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[17]

J. Kestin and L. N. Persen, The transfer of heat across a turbulent boundary layer at very high prandtl numbers, Int. J. Heat Mass Transfer, 5 (1962), 355-371.  doi: 10.1016/0017-9310(62)90026-1.  Google Scholar

[18]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar

[19]

D. Lutz, On bounded time-dependent perturbations of operator cosine functions, Aequationes Math., 23 (1981), 197-203.  doi: 10.1007/BF02188032.  Google Scholar

[20]

B. Nagy, On cosine operator functions in Banach spaces, Acta Sci. Math. Szeged, 36 (1974), 281-289.   Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[23]

H. Schlichting, Boundary-Layer Theory, McGraw-Hill Series in Mechanical Engineering McGraw-Hill Book Co., Inc., New York-Toronto-London; Verlag G. Braun, Karlsruhe, 1960.  Google Scholar

[24]

F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Texts in Applied Mathematics, 50. Springer, New York, 2005. doi: 10.1007/0-387-28313-7.  Google Scholar

Figure 1.  Numerical solutions showing the time evolution of the history intervals $ [-\tau, 0], \ \ \ \tau>0, $
Figure 2.  Numerical solutions showing evolution dynamics in the time interval [0, 25] for solutions to (33)-(34). Different delays are considered and similar trajectories are shown in both figures (integer and pure fractional order).
[1]

Lixia Duan, Zhuoqin Yang, Shenquan Liu, Dunwei Gong. Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 445-456. doi: 10.3934/dcdsb.2011.16.445

[2]

Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[3]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[4]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[5]

Suqi Ma, Zhaosheng Feng, Qishao Lu. A two-parameter geometrical criteria for delay differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 397-413. doi: 10.3934/dcdsb.2008.9.397

[6]

Hinke M. Osinga, James Rankin. Two-parameter locus of boundary crisis: Mind the gaps!. Conference Publications, 2011, 2011 (Special) : 1148-1157. doi: 10.3934/proc.2011.2011.1148

[7]

Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations & Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004

[8]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[9]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 657-670. doi: 10.3934/dcdsb.2018201

[10]

Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005

[11]

Tetsutaro Shibata. Boundary layer and variational eigencurve in two-parameter single pendulum type equations. Communications on Pure & Applied Analysis, 2006, 5 (1) : 147-154. doi: 10.3934/cpaa.2006.5.147

[12]

Eskil Hansen, Alexander Ostermann. Dimension splitting for time dependent operators. Conference Publications, 2009, 2009 (Special) : 322-332. doi: 10.3934/proc.2009.2009.322

[13]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[14]

Karim Boulabiar, Gerard Buskes and Gleb Sirotkin. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic Research Announcements, 2003, 9: 94-98.

[15]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[16]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[17]

Vesselin Petkov, Luchezar Stoyanov. Ruelle transfer operators with two complex parameters and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6413-6451. doi: 10.3934/dcds.2016077

[18]

Luis Caffarelli, Luis Duque, Hernán Vivas. The two membranes problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6015-6027. doi: 10.3934/dcds.2018152

[19]

Petr Hasil, Petr Zemánek. Critical second order operators on time scales. Conference Publications, 2011, 2011 (Special) : 653-659. doi: 10.3934/proc.2011.2011.653

[20]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (28)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]