• Previous Article
    Mathematical model of diabetes and its complication involving fractional operator without singular kernal
  • DCDS-S Home
  • This Issue
  • Next Article
    More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators
July  2021, 14(7): 2137-2150. doi: 10.3934/dcdss.2020177

Bounded perturbation for evolution equations with a parameter & application to population dynamics

Department of Mathematical Sciences, University of South Africa, Florida, 0003, South Africa

* Corresponding author: franckemile2006@yahoo.ca

Received  April 2019 Revised  September 2020 Published  July 2021 Early access  May 2021

Fund Project: This work was partially supported by the grant No: 105932 from the National Research Foundation (NRF) of South Africa

Evolution equations using derivatives of fractional order like Caputo's derivative or Riemann-Liouville's derivative have been intensively analyzed in numerous works. But the classical bounded perturbation theorem has been proven not to be in general true for these models, especially for solution operators of evolution equations with fractional order derivative $ \alpha $ less than $ 1 $ ($ 0<\alpha<1 $), as shown by the example in the next section. This paper proposes an alternative way of dealing with this issue. We make use of the conventional time derivative with a new parameter to show the perturbations by bounded linear operators for linear evolution equations when the derivative order is less than one. The new parameter which happens to be fractional, characterizes the so-called $ \beta $-derivative. Its fractional order parameter allows the use of concepts like revamped time to provide a relation between both strongly continuous two-parameter solution operators involved in the perturbation process. To validate the theory, we use an application to population dynamics and perform some numerical simulations that reveal some consistency with the expected results.

Citation: Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2137-2150. doi: 10.3934/dcdss.2020177
References:
[1] A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, 2016.  doi: 10.1016/B978-0-08-100644-3.00001-5.
[2]

A. Atangana and E. F. Doungmo Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1-7.  doi: 10.1155/2014/107535.

[3]

E. G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213-230. 

[4]

E. G. Bazhlekova, Perturbation and Approximation Properties for Abstract Evolution Equations of Fractional Order, Research Report RANA 00-05, Eindhoven University of Technology, Eindhoven 2000.

[5]

D. Brockmann and L. Hufnagel, Front propagation in reaction-superdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Review Lett., 98 (2007), 178301. doi: 10.1103/PhysRevLett.98.178301.

[6]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. R. Ast. Soc., 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.

[7]

M. Caputo and M. Fabrizio, A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13. 

[8]

G. Greiner, A typical Perron-Frobenius theorem with applications to an age-dependent population equation, Infinite-Dimensional Systems, Springer, Berlin, Heidelberg, 1076 (1984), 86–100. doi: 10.1007/BFb0072769.

[9]

W. Desch and W. Schappacher, On relatively bounded perturbations of linear $C_0$-semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 327-341. 

[10]

K. DiethelmN. J. FordA. D. Freed and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), 743-773.  doi: 10.1016/j.cma.2004.06.006.

[11]

E. F. Doungmo Goufo, Solvability of chaotic fractional systems with 3D four-scroll attractors, Chaos Solitons Fractals, 104 (2017), 443-451.  doi: 10.1016/j.chaos.2017.08.038.

[12]

E. F. Doungmo Goufo, Evolution equations with a parameter and application to transport-convection differential equations, Turkish J. Math., 41 (2017), 636-654.  doi: 10.3906/mat-1603-107.

[13]

E. F. Doungmo Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Burgers equation, Math. Model. Anal., 21 (2016), 188-198.  doi: 10.3846/13926292.2016.1145607.

[14]

E. F. Doungmo Goufo and A. Atangana, Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 645-662.  doi: 10.3934/dcdss.2020035.

[15]

E. F. Doungmo Goufo and J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, J. Comput. Appl. Math., 339 (2018), 329-342.  doi: 10.1016/j.cam.2017.08.026.

[16]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics (Book 194), New York, NY, USA: Springer-Verlag, 2000.

[17]

R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[18]

J. Kestin and L. N. Persen, The transfer of heat across a turbulent boundary layer at very high prandtl numbers, Int. J. Heat Mass Transfer, 5 (1962), 355-371.  doi: 10.1016/0017-9310(62)90026-1.

[19]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.

[20]

D. Lutz, On bounded time-dependent perturbations of operator cosine functions, Aequationes Math., 23 (1981), 197-203.  doi: 10.1007/BF02188032.

[21]

B. Nagy, On cosine operator functions in Banach spaces, Acta Sci. Math. Szeged, 36 (1974), 281-289. 

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, vol. 44, 1983. doi: 10.1007/978-1-4612-5561-1.

[23]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.

[24]

H. Schlichting, Boundary-Layer Theory, (7 ed.). New York (USA): McGraw-Hill, 1979.

[25]

F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, Dordrecht, 2005. doi: 10.1007/0-387-28313-7.

show all references

References:
[1] A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, 2016.  doi: 10.1016/B978-0-08-100644-3.00001-5.
[2]

A. Atangana and E. F. Doungmo Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1-7.  doi: 10.1155/2014/107535.

[3]

E. G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal., 3 (2000), 213-230. 

[4]

E. G. Bazhlekova, Perturbation and Approximation Properties for Abstract Evolution Equations of Fractional Order, Research Report RANA 00-05, Eindhoven University of Technology, Eindhoven 2000.

[5]

D. Brockmann and L. Hufnagel, Front propagation in reaction-superdiffusion dynamics: Taming Lévy flights with fluctuations, Phys. Review Lett., 98 (2007), 178301. doi: 10.1103/PhysRevLett.98.178301.

[6]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. R. Ast. Soc., 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.

[7]

M. Caputo and M. Fabrizio, A New Definition of Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 1-13. 

[8]

G. Greiner, A typical Perron-Frobenius theorem with applications to an age-dependent population equation, Infinite-Dimensional Systems, Springer, Berlin, Heidelberg, 1076 (1984), 86–100. doi: 10.1007/BFb0072769.

[9]

W. Desch and W. Schappacher, On relatively bounded perturbations of linear $C_0$-semigroups, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 327-341. 

[10]

K. DiethelmN. J. FordA. D. Freed and Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), 743-773.  doi: 10.1016/j.cma.2004.06.006.

[11]

E. F. Doungmo Goufo, Solvability of chaotic fractional systems with 3D four-scroll attractors, Chaos Solitons Fractals, 104 (2017), 443-451.  doi: 10.1016/j.chaos.2017.08.038.

[12]

E. F. Doungmo Goufo, Evolution equations with a parameter and application to transport-convection differential equations, Turkish J. Math., 41 (2017), 636-654.  doi: 10.3906/mat-1603-107.

[13]

E. F. Doungmo Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Burgers equation, Math. Model. Anal., 21 (2016), 188-198.  doi: 10.3846/13926292.2016.1145607.

[14]

E. F. Doungmo Goufo and A. Atangana, Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 645-662.  doi: 10.3934/dcdss.2020035.

[15]

E. F. Doungmo Goufo and J. J. Nieto, Attractors for fractional differential problems of transition to turbulent flows, J. Comput. Appl. Math., 339 (2018), 329-342.  doi: 10.1016/j.cam.2017.08.026.

[16]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics (Book 194), New York, NY, USA: Springer-Verlag, 2000.

[17]

R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.

[18]

J. Kestin and L. N. Persen, The transfer of heat across a turbulent boundary layer at very high prandtl numbers, Int. J. Heat Mass Transfer, 5 (1962), 355-371.  doi: 10.1016/0017-9310(62)90026-1.

[19]

R. KhalilM. Al HoraniA. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.

[20]

D. Lutz, On bounded time-dependent perturbations of operator cosine functions, Aequationes Math., 23 (1981), 197-203.  doi: 10.1007/BF02188032.

[21]

B. Nagy, On cosine operator functions in Banach spaces, Acta Sci. Math. Szeged, 36 (1974), 281-289. 

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, vol. 44, 1983. doi: 10.1007/978-1-4612-5561-1.

[23]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.

[24]

H. Schlichting, Boundary-Layer Theory, (7 ed.). New York (USA): McGraw-Hill, 1979.

[25]

F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, Dordrecht, 2005. doi: 10.1007/0-387-28313-7.

Figure 1.  Numerical solutions showing the time evolution of the history intervals $ [-\tau, 0], \ \ \ \tau>0, $
Figure 2.  Numerical solutions showing evolution dynamics in the time interval [0, 25] for solutions to (33)-(34). Different delays are considered and similar trajectories are shown in both figures (integer and pure fractional order)
[1]

Mohd Raiz, Amit Kumar, Vishnu Narayan Mishra, Nadeem Rao. Dunkl analogue of Sz$ \acute{a} $sz-Schurer-Beta operators and their approximation behaviour. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022007

[2]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[3]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128

[4]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[5]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[6]

Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162

[7]

Li Wang, Qiang Xu, Shulin Zhou. $ L^p $ Neumann problems in homogenization of general elliptic operators. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5019-5045. doi: 10.3934/dcds.2020210

[8]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[9]

Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom. More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2119-2135. doi: 10.3934/dcdss.2021063

[10]

Purshottam Narain Agrawal, Jitendra Kumar Singh. Better approximation by a Durrmeyer variant of $ \alpha- $Baskakov operators. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2021040

[11]

Fang Liu. The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2701-2720. doi: 10.3934/dcdsb.2021155

[12]

Antonio G. García. Sampling in $ \Lambda $-shift-invariant subspaces of Hilbert-Schmidt operators on $ L^2(\mathbb{R}^d) $. Mathematical Foundations of Computing, 2021, 4 (4) : 281-297. doi: 10.3934/mfc.2021019

[13]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[14]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[15]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[16]

Thomas French. Follower, predecessor, and extender set sequences of $ \beta $-shifts. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4331-4344. doi: 10.3934/dcds.2019175

[17]

Victor Vargas. On involution kernels and large deviations principles on $ \beta $-shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2699-2718. doi: 10.3934/dcds.2021208

[18]

Riane Hajjami, Mustapha El Jarroudi, Aadil Lahrouz, Adel Settati, Mohamed EL Fatini, Kai Wang. Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4191-4225. doi: 10.3934/dcdsb.2020285

[19]

Tian-Xiao He, Peter J.-S. Shiue. Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, 2021, 29 (5) : 3489-3507. doi: 10.3934/era.2021049

[20]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (110)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]