• Previous Article
    A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators
  • DCDS-S Home
  • This Issue
  • Next Article
    Optimization model and solution method for dynamically correlated two-product newsvendor problems based on Copula
doi: 10.3934/dcdss.2020178

Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives

Department of Mathematics, Balıkesir University, Balıkesir, 10145, Turkey

* Corresponding author: Sümeyra Uçar

Received  April 2019 Revised  May 2019 Published  December 2019

These days, it is widely known that smoking causes numerous diseases, as well as resulting in many avoidable losses of life globally, and therefore encumbers the society with enormous unnecessary burdens. In this work, we principally aim to thoroughly examine a smoking model as affected by determination and education-related activities through Caputo-Fabrizio and Atangana-Baleanu derivatives. We use fixed point method making it possible for us to trace the proof of existence and uniqueness results for both fractional order models. We theoretically display the effectual features of the aforementioned fractional models, verifying the results via numerical graphics with different fractional orders.

Citation: Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020178
References:
[1]

B. S. T. AlkahtaniA. Atangana and I. Koca, Huge analysis of Hepatitis C model within the scope of fractional calculus, J. Nonlinear Sci. Appl., 9 (2016), 6195-6203.  doi: 10.22436/jnsa.009.12.24.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[4]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[5]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 6 pp. Google Scholar

[6]

A. Atangana, On the new fractional derivative and application to nonlinear Fishers reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[7]

A. Atangana and B. S. T. Alkahtani, Analysis of the Keller Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453.  doi: 10.3390/e17064439.  Google Scholar

[8] A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology, Academic Press, London, 2018.   Google Scholar
[9]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 21 pp. doi: 10.1051/mmnp/2018010.  Google Scholar

[10]

D. Baleanu, Z. B. Guvenc and J. A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Tenreiro Machado, Springer, New York, 2010. doi: 10.1007/978-90-481-3293-5.  Google Scholar

[11]

D. Baleanu and A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444-462.  doi: 10.1016/j.cnsns.2017.12.003.  Google Scholar

[12]

H. M. BaskonusT. MekkaouiZ. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771-5783.  doi: 10.3390/e17085771.  Google Scholar

[13]

T. J. BrinkerS. S. BalderjahnW. Seeger and D. A. Groneberg, Education Against Tobacco (EAT): A quasi-experimental prospective evaluation of a programme for preventing smoking in secondary schools delivered by medical students: A study protocol, BMJ open, 4 (2014), 1-7.  doi: 10.1136/bmjopen-2014-004909.  Google Scholar

[14]

C. Bullen, Impact of tobacco smoking and smoking cessation on cardiovascular risk and disease, Expert Review of Cardiovascular Therapy, 6 (2008), 883-895.  doi: 10.1586/14779072.6.6.883.  Google Scholar

[15]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.   Google Scholar

[16]

F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016), 75-83.  doi: 10.11121/ijocta.01.2016.00317.  Google Scholar

[17]

F. Evirgen and N. Ozdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, Fractional Dynamics and Control, Springer, New York, 2012, 145–155. doi: 10.1007/978-1-4614-0457-6_12.  Google Scholar

[18]

A. FernandezD. Baleanu and H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 517-527.  doi: 10.1016/j.cnsns.2018.07.035.  Google Scholar

[19]

J. F. Gomez Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.  Google Scholar

[20]

O. K. Ham, Stages and processes of smoking cessation among adolescents, Western Journal of Nursing Research, 29 (2007), 301-315.   Google Scholar

[21]

K. O. Haustein and D. Groneberg, Tobacco or Health?: Physiological and Social Damages Caused by Tobacco Smoking, Springer-Verlag Berlin, 2010. Google Scholar

[22]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.  Google Scholar

[23]

I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, An International Journal of Optimization and Control: Theory and Applications, 8 (2018), 17-25.  doi: 10.11121/ijocta.01.2018.00532.  Google Scholar

[24]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 87-92.   Google Scholar

[25]

J. T. Machado and A. M. Lopes, Artistic painting: A fractional calculus perspective, Applied Mathematical Modelling, 65 (2019), 614-626.   Google Scholar

[26]

N. ÖzdemirO. P. AgrawalB. B. İskender and D. Karadeniz, Fractional optimal control of a 2-dimensional distributed system using eigenfunctions, Nonlinear Dynamics, 55 (2009), 251-260.  doi: 10.1007/s11071-008-9360-4.  Google Scholar

[27]

N. ÖzdemirD. Karadeniz and B. B. İskender, Fractional optimal control problem of a distributed system in cylindrical coordinates, Physics Letters A, 373 (2009), 221-226.  doi: 10.1016/j.physleta.2008.11.019.  Google Scholar

[28]

N. Özdemir and M. Yavuz, Numerical Solution of fractional Black-Scholes equation by using the multivariate Padé approximation, Acta Physica Polonica A, 132 (2017), 1050-1053.   Google Scholar

[29]

J. Singh, D. Kumar, M. A. Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Difference Equ., 88 (2017), 16 pp. doi: 10.1186/s13662-017-1139-9.  Google Scholar

[30]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[31]

N. H. SweilamA. M. Nagy and A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos Solitons Fractals, 73 (2015), 141-147.  doi: 10.1016/j.chaos.2015.01.010.  Google Scholar

[32]

M. Toufik and A. Atangana, New numerical approaximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017). Google Scholar

[33]

E. Uçar, N. Özdemir and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 12 pp. doi: 10.1051/mmnp/2019002.  Google Scholar

[34]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos, Solitons Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.  Google Scholar

[35]

S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch and D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete and Continuous Dynamical Systems Series S, 2019, 11–27. doi: 10.3934/dcdss.2020057.  Google Scholar

[36]

M. Yavuz and E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Physica A, 525 (2019), 373-393.  doi: 10.1016/j.physa.2019.03.069.  Google Scholar

[37]

A. Yadav, P. K. Srivastava and A. Kumar, Mathematical model for smoking: Effect of determination and education, Int. J. Biomath., 8 (2015), 14 pp. doi: 10.1142/S1793524515500011.  Google Scholar

show all references

References:
[1]

B. S. T. AlkahtaniA. Atangana and I. Koca, Huge analysis of Hepatitis C model within the scope of fractional calculus, J. Nonlinear Sci. Appl., 9 (2016), 6195-6203.  doi: 10.22436/jnsa.009.12.24.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[4]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[5]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 6 pp. Google Scholar

[6]

A. Atangana, On the new fractional derivative and application to nonlinear Fishers reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956.  doi: 10.1016/j.amc.2015.10.021.  Google Scholar

[7]

A. Atangana and B. S. T. Alkahtani, Analysis of the Keller Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453.  doi: 10.3390/e17064439.  Google Scholar

[8] A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology, Academic Press, London, 2018.   Google Scholar
[9]

A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 21 pp. doi: 10.1051/mmnp/2018010.  Google Scholar

[10]

D. Baleanu, Z. B. Guvenc and J. A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications, Tenreiro Machado, Springer, New York, 2010. doi: 10.1007/978-90-481-3293-5.  Google Scholar

[11]

D. Baleanu and A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444-462.  doi: 10.1016/j.cnsns.2017.12.003.  Google Scholar

[12]

H. M. BaskonusT. MekkaouiZ. Hammouch and H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771-5783.  doi: 10.3390/e17085771.  Google Scholar

[13]

T. J. BrinkerS. S. BalderjahnW. Seeger and D. A. Groneberg, Education Against Tobacco (EAT): A quasi-experimental prospective evaluation of a programme for preventing smoking in secondary schools delivered by medical students: A study protocol, BMJ open, 4 (2014), 1-7.  doi: 10.1136/bmjopen-2014-004909.  Google Scholar

[14]

C. Bullen, Impact of tobacco smoking and smoking cessation on cardiovascular risk and disease, Expert Review of Cardiovascular Therapy, 6 (2008), 883-895.  doi: 10.1586/14779072.6.6.883.  Google Scholar

[15]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.   Google Scholar

[16]

F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016), 75-83.  doi: 10.11121/ijocta.01.2016.00317.  Google Scholar

[17]

F. Evirgen and N. Ozdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, Fractional Dynamics and Control, Springer, New York, 2012, 145–155. doi: 10.1007/978-1-4614-0457-6_12.  Google Scholar

[18]

A. FernandezD. Baleanu and H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 517-527.  doi: 10.1016/j.cnsns.2018.07.035.  Google Scholar

[19]

J. F. Gomez Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.  Google Scholar

[20]

O. K. Ham, Stages and processes of smoking cessation among adolescents, Western Journal of Nursing Research, 29 (2007), 301-315.   Google Scholar

[21]

K. O. Haustein and D. Groneberg, Tobacco or Health?: Physiological and Social Damages Caused by Tobacco Smoking, Springer-Verlag Berlin, 2010. Google Scholar

[22]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.  Google Scholar

[23]

I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, An International Journal of Optimization and Control: Theory and Applications, 8 (2018), 17-25.  doi: 10.11121/ijocta.01.2018.00532.  Google Scholar

[24]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 87-92.   Google Scholar

[25]

J. T. Machado and A. M. Lopes, Artistic painting: A fractional calculus perspective, Applied Mathematical Modelling, 65 (2019), 614-626.   Google Scholar

[26]

N. ÖzdemirO. P. AgrawalB. B. İskender and D. Karadeniz, Fractional optimal control of a 2-dimensional distributed system using eigenfunctions, Nonlinear Dynamics, 55 (2009), 251-260.  doi: 10.1007/s11071-008-9360-4.  Google Scholar

[27]

N. ÖzdemirD. Karadeniz and B. B. İskender, Fractional optimal control problem of a distributed system in cylindrical coordinates, Physics Letters A, 373 (2009), 221-226.  doi: 10.1016/j.physleta.2008.11.019.  Google Scholar

[28]

N. Özdemir and M. Yavuz, Numerical Solution of fractional Black-Scholes equation by using the multivariate Padé approximation, Acta Physica Polonica A, 132 (2017), 1050-1053.   Google Scholar

[29]

J. Singh, D. Kumar, M. A. Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Difference Equ., 88 (2017), 16 pp. doi: 10.1186/s13662-017-1139-9.  Google Scholar

[30]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[31]

N. H. SweilamA. M. Nagy and A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos Solitons Fractals, 73 (2015), 141-147.  doi: 10.1016/j.chaos.2015.01.010.  Google Scholar

[32]

M. Toufik and A. Atangana, New numerical approaximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017). Google Scholar

[33]

E. Uçar, N. Özdemir and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 12 pp. doi: 10.1051/mmnp/2019002.  Google Scholar

[34]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos, Solitons Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.  Google Scholar

[35]

S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch and D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete and Continuous Dynamical Systems Series S, 2019, 11–27. doi: 10.3934/dcdss.2020057.  Google Scholar

[36]

M. Yavuz and E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Physica A, 525 (2019), 373-393.  doi: 10.1016/j.physa.2019.03.069.  Google Scholar

[37]

A. Yadav, P. K. Srivastava and A. Kumar, Mathematical model for smoking: Effect of determination and education, Int. J. Biomath., 8 (2015), 14 pp. doi: 10.1142/S1793524515500011.  Google Scholar

Figure 1.  Numerical simulations for the model (7) at $ \sigma = 0.93 $ and $ \sigma = 0.75 $, respectively
Figure 2.  Numerical simulations for the model (8) at $ \sigma = 0.93 $ and $ \sigma = 0.75 $, respectively
Figure 3.  The effect of the parameters $ a_{4} $ on the smokers population $ s $ of the model (7) for the fractional order $ \sigma = 0.95 $ and $ \sigma = 0.75 $, respectively
Figure 4.  The effect of the parameters $ a_{4} $ on the smokers population $ s $ of the model (8) for the fractional order $ \sigma = 0.95 $ and $ \sigma = 0.75 $, respectively
Figure 5.  The effect of the parameters $ a_{5} $ on the smokers population $ s $ of the model (7) for the fractional order $ \sigma = 0.95 $ and $ \sigma = 0.75 $, respectively
Figure 6.  The effect of the parameters $ a_{5} $ on the smokers population $ s $ of the model (8) for the fractional order $ \sigma = 0.95 $ and $ \sigma = 0.75 $, respectively
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[3]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[4]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[5]

Ndolane Sene. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020173

[6]

Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1

[7]

G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027

[8]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[9]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[10]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[11]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[12]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[13]

Razvan Mosincat, Haewon Yoon. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 47-80. doi: 10.3934/dcds.2020003

[14]

L. Bedin, Mark Thompson. Existence theory for a Poisson-Nernst-Planck model of electrophoresis. Communications on Pure & Applied Analysis, 2013, 12 (1) : 157-206. doi: 10.3934/cpaa.2013.12.157

[15]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[16]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[17]

Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

[18]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[19]

Anatoli Babin, Alexander Figotin. Some mathematical problems in a neoclassical theory of electric charges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1283-1326. doi: 10.3934/dcds.2010.27.1283

[20]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]