Our aim in this article is to study properties of a generalized dynamical system modeling brain lactate kinetics, with $ N $ neuron compartments and $ A $ astrocyte compartments. In particular, we prove the uniqueness of the stationary point and its asymptotic stability. Furthermore, we check that the system is positive and cooperative.
Citation: |
[1] |
B. Abraham and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
![]() ![]() |
[2] |
A. Aubert and R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, J. Cereb. Blood Flow Metab., 25 (2005), 1476-1490.
doi: 10.1038/sj.jcbfm.9600144.![]() ![]() |
[3] |
R. Costalat, J.-P. Françoise, C. Menuel, M. Lahutte, J.-N. Vallée, G. de Marco, J. Chiras and R. Guillevin, Mathematical modeling of metabolism and hemodynamics, Acta Biotheor., 60 (2012), 99-107.
doi: 10.1007/s10441-012-9157-1.![]() ![]() |
[4] |
R. Guillevin, A. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electron. J. Differential Equations, 23 (2017), 1-16.
![]() ![]() |
[5] |
J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics, 8, Springer-Verlag, New York, 1998.
![]() ![]() |
[6] |
M. Lahutte-Auboin, Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes, Ph.D thesis, Université Pierre et Marie Curie, 2015.
![]() |
[7] |
M. Lahutte-Auboin, R. Costalat, J.-P. Françoise and R. Guillevin, Dip and buffering in a fast-slow system associated to brain lactate, kinetics, preprint, arXiv: math/1308.0486v1.
![]() |
[8] |
M. Lahutte-Auboin, R. Guillevin, J.-P. Françoise, J.-N. Vallée and R. Costalat, On a minimal model for hemodynamics and metabolism of lactate: Application to low grade glioma and therapeutic strategies, Acta Biotheor., 61 (2013), 79-89.
doi: 10.1007/s10441-013-9174-8.![]() ![]() |
[9] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719512.![]() ![]() ![]() |
[10] |
A. Miranville, A singular reaction-diffusion equation associated with brain lactate kinetics, Math. Methods Appl. Sci., 40 (2017), 2454-2465.
doi: 10.1002/mma.4150.![]() ![]() ![]() |
[11] |
H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J. Appl. Math., 46 (1986), 368-375.
doi: 10.1137/0146025.![]() ![]() ![]() |
[12] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.
![]() ![]() |