\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The stability analysis of brain lactate kinetics

  • * Corresponding author: Jean-Pierre Francoise

    * Corresponding author: Jean-Pierre Francoise 
Abstract Full Text(HTML) Related Papers Cited by
  • Our aim in this article is to study properties of a generalized dynamical system modeling brain lactate kinetics, with $ N $ neuron compartments and $ A $ astrocyte compartments. In particular, we prove the uniqueness of the stationary point and its asymptotic stability. Furthermore, we check that the system is positive and cooperative.

    Mathematics Subject Classification: Primary: 34D20; Secondary: 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] B. Abraham and R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
    [2] A. Aubert and R. Costalat, Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, J. Cereb. Blood Flow Metab., 25 (2005), 1476-1490.  doi: 10.1038/sj.jcbfm.9600144.
    [3] R. CostalatJ.-P. FrançoiseC. MenuelM. LahutteJ.-N. ValléeG. de MarcoJ. Chiras and R. Guillevin, Mathematical modeling of metabolism and hemodynamics, Acta Biotheor., 60 (2012), 99-107.  doi: 10.1007/s10441-012-9157-1.
    [4] R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electron. J. Differential Equations, 23 (2017), 1-16. 
    [5] J. Keener and J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics, 8, Springer-Verlag, New York, 1998.
    [6] M. Lahutte-Auboin, Modélisation biomathématique du métabolisme énergétique cérébral : réduction de modèle et approche multi-échelle, application à l'aide à la décision pour la pathologie des gliomes, Ph.D thesis, Université Pierre et Marie Curie, 2015.
    [7] M. Lahutte-Auboin, R. Costalat, J.-P. Françoise and R. Guillevin, Dip and buffering in a fast-slow system associated to brain lactate, kinetics, preprint, arXiv: math/1308.0486v1.
    [8] M. Lahutte-AuboinR. GuillevinJ.-P. FrançoiseJ.-N. Vallée and R. Costalat, On a minimal model for hemodynamics and metabolism of lactate: Application to low grade glioma and therapeutic strategies, Acta Biotheor., 61 (2013), 79-89.  doi: 10.1007/s10441-013-9174-8.
    [9] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. doi: 10.1137/1.9780898719512.
    [10] A. Miranville, A singular reaction-diffusion equation associated with brain lactate kinetics, Math. Methods Appl. Sci., 40 (2017), 2454-2465.  doi: 10.1002/mma.4150.
    [11] H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J. Appl. Math., 46 (1986), 368-375.  doi: 10.1137/0146025.
    [12] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, American Mathematical Society, Providence, RI, 1995.
  • 加载中
SHARE

Article Metrics

HTML views(1325) PDF downloads(284) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return