[1] |
A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani,
A Cahn-Hilliard-type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626.
doi: 10.1002/mma.4548.
Google Scholar
|
[2] |
Z. Agur, L. Arakelyan, P. Daugulis and Y. Ginosar,
Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 29-38.
doi: 10.3934/dcdsb.2004.4.29.
Google Scholar
|
[3] |
M. Agus, D. Boges, N. Gagnon, P. J. Magistretti, M. Hadwiger and C. Cali,
GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments, Computers & Graphics, 74 (2018), 85-98.
doi: 10.1016/j.cag.2018.04.007.
Google Scholar
|
[4] |
P. M. Altrock, L. L. Liu and F. Michor, The mathematics of cancer: Integrating quantitative models, Nature Reviews Cancer, 15 (2015), 730.
doi: 10.1038/nrc4029.
Google Scholar
|
[5] |
D. Ambrosi and F. Mollica,
The role of stress in the growth of a multicell spheroid, J. Math. Biol., 48 (2004), 477-499.
doi: 10.1007/s00285-003-0238-2.
Google Scholar
|
[6] |
L. K. Andersen and M. C. Mackey,
Resonance in periodic chemotherapy: A case study of acute myelogenous leukemia, J. Theoretical Biol., 209 (2001), 113-130.
doi: 10.1006/jtbi.2000.2255.
Google Scholar
|
[7] |
A. R. Anderson, M. Hassanein, K. M. Branch, J. Lu, N. A. Lobdell, J. Maier, D. Basanta, B. Weidow, A. Narasanna and C. L. Arteaga et al.,
Microenvironmental independence associated with tumor progression, Cancer Research, 69 (2009), 8797-8806.
doi: 10.1158/0008-5472.CAN-09-0437.
Google Scholar
|
[8] |
A. R. Anderson and V. Quaranta,
Integrative mathematical oncology, Nature Reviews Cancer, 8 (2008), 227-234.
doi: 10.1038/nrc2329.
Google Scholar
|
[9] |
A. R. Anderson, A. M. Weaver, P. T. Cummings and V. Quaranta,
Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell, 127 (2006), 905-915.
doi: 10.1016/j.cell.2006.09.042.
Google Scholar
|
[10] |
L. Arakelyan, Y. Merbl and Z. Agur,
Vessel maturation effects on tumour growth: Validation of a computer model in implanted human ovarian carcinoma spheroids, European J. Cancer, 41 (2005), 159-167.
doi: 10.1016/j.ejca.2004.09.012.
Google Scholar
|
[11] |
R. P. Araujo and D. S. McElwain,
A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039-1091.
doi: 10.1016/j.bulm.2003.11.002.
Google Scholar
|
[12] |
O. Arino, A. Bertuzzi, A. Gandolfi, E. Sánchez and C. Sinisgalli,
A model with `growth retardation' for the kinetic heterogeneity of tumour cell populations, Math. Biosci., 206 (2007), 185-199.
doi: 10.1016/j.mbs.2005.04.008.
Google Scholar
|
[13] |
A. Aubert and R. Costalat,
Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, J. Cerebral Blood Flow & Metabolism, 25 (2005), 1476-1490.
doi: 10.1038/sj.jcbfm.9600144.
Google Scholar
|
[14] |
D. Balding and D. McElwain,
A mathematical model of tumour-induced capillary growth, J. Theoret. Biol., 114 (1985), 53-73.
doi: 10.1016/S0022-5193(85)80255-1.
Google Scholar
|
[15] |
M. Baron, L. Bauchet, V. Bernier, L. Capelle, D. Fontaine, P. Gatignol, J. Guyotat, M. Leroy, E. Mandonnet and J. Pallud et al.,
Gliomes de grade Ⅱ, EMC-Neurol., 5 (2008), 1-17.
doi: 10.1016/S0246-0378(08)46100-6.
Google Scholar
|
[16] |
B. Basse and P. Ubezio,
A generalised age-and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies, Bull. Math. Biol., 69 (2007), 1673-1690.
doi: 10.1007/s11538-006-9185-6.
Google Scholar
|
[17] |
L. Bauchet, Epidemiology of diffuse low grade gliomas, in Diffuse Low-Grade Gliomas in Adults, Springer, 2017, 13–53.
doi: 10.1007/978-3-319-55466-2_2.
Google Scholar
|
[18] |
R. E. Bellman, Mathematical Methods in Medicine, Series in Modern Applied Mathematics, 1, World Scientific Publishing Co., Singapore, 1983.
doi: 10.1142/0028.
Google Scholar
|
[19] |
S. Benzekry, C. Lamont, D. Barbolosi, L. Hlatky and P. Hahnfeldt,
Mathematical modeling of tumor-tumor distant interactions supports a systemic control of tumor growth, Cancer Research, 77 (2017), 5183-5193.
doi: 10.1158/0008-5472.CAN-17-0564.
Google Scholar
|
[20] |
S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi and J. M. Ebos,
Modeling spontaneous metastasis following surgery: An in vivo-in silico approach, Cancer Research, 76 (2016), 535-547.
doi: 10.1158/0008-5472.CAN-15-1389.
Google Scholar
|
[21] |
F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J.-P. Boissel, E. Grenier and J.-P. Flandrois,
A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, J. Theoret. Biol., 260 (2009), 545-562.
doi: 10.1016/j.jtbi.2009.06.026.
Google Scholar
|
[22] |
A. Bratus, I. Yegorov and D. Yurchenko,
Dynamic mathematical models of therapy processes against glioma and leukemia under stochastic uncertainties, Meccanica dei Materiali e delle Strutture, 6 (2016), 131-138.
Google Scholar
|
[23] |
H. Byrne and L. Preziosi,
Modelling solid tumour growth using the theory of mixtures, Math. Medicine Biol.: J. IMA, 20 (2003), 341-366.
doi: 10.1093/imammb/20.4.341.
Google Scholar
|
[24] |
H. M. Byrne,
Dissecting cancer through mathematics: From the cell to the animal model, Nature Reviews Cancer, 10 (2010), 221-230.
doi: 10.1038/nrc2808.
Google Scholar
|
[25] |
H. Byrne, T. Alarcon, M. Owen, S. Webb and P. Maini,
Modelling aspects of cancer dynamics: A review, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 364 (2006), 1563-1578.
doi: 10.1098/rsta.2006.1786.
Google Scholar
|
[26] |
H. Byrne and M. A. J. Chaplain,
Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosciences, 130 (1995), 151-181.
doi: 10.1016/0025-5564(94)00117-3.
Google Scholar
|
[27] |
M. Chaplain,
Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development, Math. Comput. Modell., 23 (1996), 47-87.
doi: 10.1016/0895-7177(96)00019-2.
Google Scholar
|
[28] |
G. Cheng, J. Tse, R. K. Jain and L. L. Munn, Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells, PLoS one, 4 (2009).
doi: 10.1371/journal.pone.0004632.
Google Scholar
|
[29] |
E. B. Claus and P. M. Black,
Survival rates and patterns of care for patients diagnosed with supratentorial low-grade gliomas, Cancer: Interdisciplinary Internat. J. Amer. Cancer Soc., 106 (2006), 1358-1363.
doi: 10.1002/cncr.21733.
Google Scholar
|
[30] |
C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike and A. C. Evans, Brainweb: Online interface to a 3D MRI simulated brain database, in NeuroImage, Citeseer, 1997. Google Scholar
|
[31] |
E. A. Codling, M. J. Plank and S. Benhamou,
Random walk models in biology, J. Royal Soc. Interface, 5 (2008), 813-834.
doi: 10.1098/rsif.2008.0014.
Google Scholar
|
[32] |
V. Cristini, X. Li, J. S. Lowengrub and S. M. Wise,
Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723-763.
doi: 10.1007/s00285-008-0215-x.
Google Scholar
|
[33] |
E. De Angelis and L. Preziosi,
Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem, Math. Models Methods Appl. Sci., 10 (2000), 379-407.
doi: 10.1142/S0218202500000239.
Google Scholar
|
[34] |
L. G. de Pillis, W. Gu and A. E. Radunskaya,
Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations, J. Theoret. Biol., 238 (2006), 841-862.
doi: 10.1016/j.jtbi.2005.06.037.
Google Scholar
|
[35] |
L. Demetrius and J. Tuszynski,
Quantum metabolism explains the allometric scaling of metabolic rates, J. Royal Soc. Interface, 7 (2010), 507-514.
doi: 10.1098/rsif.2009.0310.
Google Scholar
|
[36] |
L. A. Demetrius, J. F. Coy and J. A. Tuszynski, Cancer proliferation and therapy: The Warburg effect and quantum metabolism, Theoret. Biol. Medical Modell., 7 (2010).
doi: 10.1186/1742-4682-7-2.
Google Scholar
|
[37] |
L. A. Demetrius and D. K. Simon,
An inverse-Warburg effect and the origin of Alzheimer's disease, Biogerontology, 13 (2012), 583-594.
doi: 10.1007/s10522-012-9403-6.
Google Scholar
|
[38] |
D. Dingli, M. D. Cascino, K. Josić, S. J. Russell and Ž. Bajzer,
Mathematical modeling of cancer radiovirotherapy, Math. Biosci., 199 (2006), 55-78.
doi: 10.1016/j.mbs.2005.11.001.
Google Scholar
|
[39] |
H. Duffau and L. Taillandier, New individualized and dynamic therapeutic strategies in DLGG, in Diffuse Low-Grade Gliomas in Adults, Springer, Cham, 2017,609–624.
doi: 10.1007/978-3-319-55466-2_28.
Google Scholar
|
[40] |
A. d'Onofrio and A. Gandolfi,
Tumour eradication by antiangiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al.(1999), Math. Biosci., 191 (2004), 159-184.
doi: 10.1016/j.mbs.2004.06.003.
Google Scholar
|
[41] |
A. Ergun, K. Camphausen and L. M. Wein,
Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. Math. Biol., 65 (2003), 407-424.
doi: 10.1016/S0092-8240(03)00006-5.
Google Scholar
|
[42] |
M. E. Fernández-Sánchez, S. Barbier, J. Whitehead, G. Béalle, A. Michel, H. Latorre-Ossa, C. Rey, L. Fouassier, A. Claperon and L. Brullé et al.,
Mechanical induction of the tumorigenic $\beta$–catenin pathway by tumour growth pressure, Nature, 523 (2015), 92-95.
doi: 10.1038/nature14329.
Google Scholar
|
[43] |
U. Forys, Y. Kheifetz and Y. Kogan,
Critical-point analysis for three-variable cancer angiogenesis models, Math. Biosci. Eng., 2 (2005), 511-525.
doi: 10.3934/mbe.2005.2.511.
Google Scholar
|
[44] |
H. B. Frieboes, X. Zheng, C.-H. Sun, B. Tromberg, R. Gatenby and V. Cristini,
An integrated computational/experimental model of tumor invasion, Cancer Research, 66 (2006), 1597-1604.
doi: 10.1158/0008-5472.CAN-05-3166.
Google Scholar
|
[45] |
M. Gałach,
Dynamics of the tumor-immune system competition-the effect of time delay, Int. J. Appl. Math. Comput. Sci., 13 (2003), 395-406.
Google Scholar
|
[46] |
H. Garcke, K. F. Lam, E. Sitka and V. Styles,
A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.
doi: 10.1142/S0218202516500263.
Google Scholar
|
[47] |
R. Gatenby, K. Smallbone, P. Maini, F. Rose, J. Averill, R. Nagle, L. Worrall and R. Gillies,
Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, British J. Cancer, 97 (2007), 646-653.
doi: 10.1038/sj.bjc.6603922.
Google Scholar
|
[48] |
R. A. Gatenby and T. L. Vincent,
An evolutionary model of carcinogenesis, Cancer Research, 63 (2003), 6212-6220.
Google Scholar
|
[49] |
R. A. Gatenby, T. L. Vincent and R. J. Gillies,
Evolutionary dynamics in carcinogenesis, Math. Models Methods Appl. Sci., 15 (2005), 1619-1638.
doi: 10.1142/S0218202505000911.
Google Scholar
|
[50] |
L. Gay, A.-M. Baker and T. A. Graham, Tumour cell heterogeneity, F1000 Res., 5 (2016).
doi: 10.12688/f1000research.7210.1.
Google Scholar
|
[51] |
C. Gerin, Modelisation et etude histologique de gliomes diffus de bas grade, Ph.D thesis, Université Paris-Diderot in Paris, 2012. Google Scholar
|
[52] |
H. Gomez,
Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integrative Biol., 9 (2017), 257-262.
doi: 10.1039/C6IB00208K.
Google Scholar
|
[53] |
L. Graziano and L. Preziosi, Mechanics in tumor growth, in Modeling of Biological Materials, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2007,263–321.
doi: 10.1007/978-0-8176-4411-6_7.
Google Scholar
|
[54] |
H. Greenspan,
Models for the growth of a solid tumor by diffusion, Studies in Appl. Math., 51 (1972), 317-340.
doi: 10.1002/sapm1972514317.
Google Scholar
|
[55] |
H. Greenspan,
On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), 229-242.
doi: 10.1016/S0022-5193(76)80054-9.
Google Scholar
|
[56] |
C. Guillevin, R. Guillevin, A. Miranville and A. Perrillat-Mercerot,
Analysis of a mathematical model for brain lactate kinetics, Math. Biosci. Eng., 15 (2018), 1225-1242.
doi: 10.3934/mbe.2018056.
Google Scholar
|
[57] |
C. Guiot, N. Pugno and P. P. Delsanto, Elastomechanical model of tumor invasion, Appl. Phys. Lett., 89 (2006).
doi: 10.1063/1.2398910.
Google Scholar
|
[58] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky,
Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 4770-4775.
Google Scholar
|
[59] |
H. L. Harpold, E. C. Alvord Jr. and K. R. Swanson,
The evolution of mathematical modeling of glioma proliferation and invasion, J. Neuropathology & Experimental Neurology, 66 (2007), 1-9.
doi: 10.1097/nen.0b013e31802d9000.
Google Scholar
|
[60] |
T. E. Harris, The Theory of Branching Processes, Dover Publications, Inc., Mineola, NY, 2002.
Google Scholar
|
[61] |
H. Hatzikirou, D. Basanta, M. Simon, K. Schaller and A. Deutsch,
`Go or grow': The key to the emergence of invasion in tumour progression?, Math. Med. Biol., 29 (2012), 49-65.
doi: 10.1093/imammb/dqq011.
Google Scholar
|
[62] |
P. Herzmark, K. Campbell, F. Wang, K. Wong, H. El-Samad, A. Groisman and H. R. Bourne,
Bound attractant at the leading vs. the trailing edge determines chemotactic prowess, Proceedings of the National Academy of Sciences, 104 (2007), 13349-13354.
doi: 10.1073/pnas.0705889104.
Google Scholar
|
[63] |
E. Höring, P. N. Harter, J. Seznec, J. Schittenhelm, H.-J. Bühring, S. Bhattacharyya, E. von Hattingen, C. Zachskorn, M. Mittelbronn and U. Naumann,
The "go or grow'' potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress, Acta Neuropathologica, 124 (2012), 83-97.
doi: 10.1007/s00401-011-0940-x.
Google Scholar
|
[64] |
P. Huneman and S. Dutreuil, Considérations épistémologiques sur la modélisation mathématique en biologie, 2013. Google Scholar
|
[65] |
Y. Iwasa, M. A. Nowak and F. Michor,
Evolution of resistance during clonal expansion, Genetics, 172 (2006), 2557-2566.
doi: 10.1534/genetics.105.049791.
Google Scholar
|
[66] |
K. Jaeckle, P. Decker, K. Ballman, P. Flynn, C. Giannini, B. Scheithauer, R. Jenkins and J. Buckner,
Transformation of low grade glioma and correlation with outcome: An NCCTG database analysis, J. Neuro-Oncology, 104 (2011), 253-259.
doi: 10.1007/s11060-010-0476-2.
Google Scholar
|
[67] |
Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell and J. P. Freyer,
A multiscale model for avascular tumor growth, Biophysical Journal, 89 (2005), 3884-3894.
doi: 10.1529/biophysj.105.060640.
Google Scholar
|
[68] |
R. Jolivet, J. S. Coggan, I. Allaman and P. J. Magistretti, Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble, PLoS Comput Biol, 11 (2015).
doi: 10.1371/journal.pcbi.1004036.
Google Scholar
|
[69] |
A. Jones, H. Byrne, J. Gibson and J. Dold,
A mathematical model of the stress induced during avascular tumour growth, J. Math. Biol., 40 (2000), 473-499.
doi: 10.1007/s002850000033.
Google Scholar
|
[70] |
J. Kassis, D. A. Lauffenburger, T. Turner and A. Wells,
Tumor invasion as dysregulated cell motility, Seminars in Cancer Biology, 11 (2001), 105-117.
doi: 10.1006/scbi.2000.0362.
Google Scholar
|
[71] |
A. Kaznatcheev, J. G. Scott and D. Basanta, Edge effects in game-theoretic dynamics of spatially structured tumours, J. Royal Society Interface, 12 (2015).
doi: 10.1098/rsif.2015.0154.
Google Scholar
|
[72] |
E. Khain and L. M. Sander, Generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008).
doi: 10.1103/PhysRevE.77.051129.
Google Scholar
|
[73] |
S. Khajanchi,
Modeling the dynamics of glioma-immune surveillance, Chaos Solitons Fractals, 114 (2018), 108-118.
doi: 10.1016/j.chaos.2018.06.028.
Google Scholar
|
[74] |
Y. Kim, M. A. Stolarska and H. G. Othmer,
A hybrid model for tumor spheroid growth in vitro. Ⅰ: Theoretical development and early results, Math. Models Methods Appl. Sci., 17 (2007), 1773-1798.
doi: 10.1142/S0218202507002479.
Google Scholar
|
[75] |
N. L. Komarova,
Spatial stochastic models for cancer initiation and progression, Bull. Math. Biol., 68 (2006), 1573-1599.
doi: 10.1007/s11538-005-9046-8.
Google Scholar
|
[76] |
N. L. Komarova,
Stochastic modeling of loss-and gain-of-function mutations in cancer, Math. Models Methods Appl. Sci., 17 (2007), 1647-1673.
doi: 10.1142/S021820250700242X.
Google Scholar
|
[77] |
N. L. Komarova, A. Sengupta and M. A. Nowak,
Mutation–selection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, J. Theoret. Biol., 223 (2003), 433-450.
doi: 10.1016/S0022-5193(03)00120-6.
Google Scholar
|
[78] |
N. Kronik, Y. Kogan, V. Vainstein and Z. Agur,
Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunology, Immunotherapy, 57 (2008), 425-439.
doi: 10.1007/s00262-007-0387-z.
Google Scholar
|
[79] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson,
Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.
doi: 10.1016/S0092-8240(05)80260-5.
Google Scholar
|
[80] |
S. K. Kyriacou, C. Davatzikos, S. J. Zinreich and R. N. Bryan,
Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model [MRI], IEEE Transactions on Medical Imaging, 18 (1999), 580-592.
doi: 10.1109/42.790458.
Google Scholar
|
[81] |
C. A. La Porta and S. Zapperi, The Physics of Cancer, Cambridge University Press, 2017.
doi: 10.1017/9781316271759.
Google Scholar
|
[82] |
C. A. La Porta, S. Zapperi and J. P. Sethna, Senescent cells in growing tumors: Population dynamics and cancer stem cells, PLoS Comput. Biol., 8 (2012), 13pp.
doi: 10.1371/journal.pcbi.1002316.
Google Scholar
|
[83] |
J.-B. Lagaert, Modélisation de la croissance tumorale: estimation de paramètres d'un modèle de croissance et introduction d'un modèle spécifique aux gliomes de tout grade, Ph.D thesis, Université Sciences et Technologies-Bordeaux I, 2011. Google Scholar
|
[84] |
L. A. Liotta, J. Kleinerman and G. M. Saidel,
Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation, Cancer Research, 34 (1974), 997-1004.
Google Scholar
|
[85] |
J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1–R91.
doi: 10.1088/0951-7715/23/1/R01.
Google Scholar
|
[86] |
P. Macklin,
When seeing isn't believing: How math can guide our interpretation of measurements and experiments, Cell Syst., 5 (2017), 92-94.
doi: 10.1016/j.cels.2017.08.005.
Google Scholar
|
[87] |
P. Macklin, S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini and J. Lowengrub,
Multiscale modelling and nonlinear simulation of vascular tumour growth, J. Math. Biol., 58 (2009), 765-798.
doi: 10.1007/s00285-008-0216-9.
Google Scholar
|
[88] |
E. Mandonnet, Biomathematical modeling of DLGG, in Diffuse Low-Grade Gliomas in Adults, Springer, 2017,651–664. Google Scholar
|
[89] |
E. Mandonnet, Dynamics of DLGG and clinical implications, in Diffuse Low-Grade Gliomas in Adults, Springer, 2017,287–306.
doi: 10.1007/978-3-319-55466-2_16.
Google Scholar
|
[90] |
E. Mandonnet, J.-Y. Delattre, M.-L. Tanguy, K. R. Swanson, A. F. Carpentier, H. Duffau, P. Cornu, R. Van Effenterre, E. C. Alvord Jr. and L. Capelle,
Continuous growth of mean tumor diameter in a subset of grade Ⅱ gliomas, Annals of Neurology, 53 (2003), 524-528.
doi: 10.1002/ana.10528.
Google Scholar
|
[91] |
I. Manini, F. Caponnetto, A. Bartolini, T. Ius, L. Mariuzzi, C. Di Loreto, A. P. Beltrami and D. Cesselli, Role of microenvironment in glioma invasion: What we learned from in vitro models, Internat. J. Molecular Sciences, 19 (2018).
doi: 10.3390/ijms19010147.
Google Scholar
|
[92] |
P. Mazzocco, C. Barthélémy, G. Kaloshi, M. Lavielle, D. Ricard, A. Idbaih, D. Psimaras, M.-A. Renard, A. Alentorn and J. Honnorat et al.,
Prediction of response to temozolomide in low-grade glioma patients based on tumor size dynamics and genetic characteristics, CPT: Pharmacometrics Syst. Pharmacology, 4 (2015), 728-737.
doi: 10.1002/psp4.54.
Google Scholar
|
[93] |
L. M. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley,
Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.
doi: 10.1038/nrc2013.
Google Scholar
|
[94] |
C. Metzner, C. Mark, J. Steinwachs, L. Lautscham, F. Stadler and B. Fabry, Superstatistical analysis and modelling of heterogeneous random walks, Nature Commun., 6 (2015).
doi: 10.1038/ncomms8516.
Google Scholar
|
[95] |
F. Michor, M. A. Nowak and Y. Iwasa,
Evolution of resistance to cancer therapy, Current Pharmaceutical Design, 12 (2006), 261-271.
doi: 10.2174/138161206775201956.
Google Scholar
|
[96] |
T. Mikkelsen, S. A. Enam and R. M. L., Invasion in malignant glioma, Youman's Neurological Surgery, 687–713. Google Scholar
|
[97] |
E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris, D. A. Moulding, A. J. Thrasher, E. Stride, L. Mahadevan and G. T. Charras,
The cytoplasm of living cells behaves as a poroelastic material, Nature Materials, 12 (2013), 253-261.
doi: 10.1038/nmat3517.
Google Scholar
|
[98] |
J. Monod, On chance and necessity, in Studies in the Philosophy of Biology, Springer, 1974,357–375.
doi: 10.1007/978-1-349-01892-5_20.
Google Scholar
|
[99] |
P. A. P. Moran,
Random processes in genetics, Proc. Cambridge Philos. Soc., 54 (1958), 60-71.
doi: 10.1017/S0305004100033193.
Google Scholar
|
[100] |
M. Naudin, B. Tremblais, C. Guillevin, R. Guillevin and C. Fernandez-Maloigne, Diffuse low grade glioma NMR assessment for better intra-operative targeting using fuzzy logic, in International Conference on Advanced Concepts for Intelligent Vision Systems, Springer, 2018,200–210.
doi: 10.1007/978-3-030-01449-0_17.
Google Scholar
|
[101] |
C. Nieder, A. Grosu and M. Molls,
A comparison of treatment results for recurrent malignant gliomas, Cancer Treatment Reviews, 26 (2000), 397-409.
doi: 10.1053/ctrv.2000.0191.
Google Scholar
|
[102] |
B. Novák and J. J. Tyson,
A model for restriction point control of the mammalian cell cycle, J. Theoret. Biol., 230 (2004), 563-579.
doi: 10.1016/j.jtbi.2004.04.039.
Google Scholar
|
[103] |
J. Pallud, E. Mandonnet, H. Duffau, M. Kujas, R. Guillevin, D. Galanaud, L. Taillandier and L. Capelle,
Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade Ⅱ gliomas, Annals of Neurology, 60 (2006), 380-383.
doi: 10.1002/ana.20946.
Google Scholar
|
[104] |
A. Perrillat-Mercerot, N. Bourmeyster, C. Guillevin, R. Guillevin and A. Miranville,
Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.
doi: 10.1007/s10441-019-09343-1.
Google Scholar
|
[105] |
K. A. Rejniak and A. R. Anderson,
Hybrid models of tumor growth, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3 (2011), 115-125.
doi: 10.1002/wsbm.102.
Google Scholar
|
[106] |
V. Rigau, Towards an intermediate grade in glioma classification, in Diffuse Low-Grade Gliomas in Adults, Springer-Verlag, London, 2017,101–108.
doi: 10.1007/978-3-319-55466-2_5.
Google Scholar
|
[107] |
R. Rockne, J. Rockhill, M. Mrugala, A. Spence, I. Kalet, K. Hendrickson, A. Lai, T. Cloughesy, E. Alvord Jr. and K. Swanson,
Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: A mathematical modeling approach, Physics in Medicine & Biology, 55 (2010), 3271-3285.
doi: 10.1088/0031-9155/55/12/001.
Google Scholar
|
[108] |
E. T. Roussos, J. S. Condeelis and A. Patsialou,
Chemotaxis in cancer, Nature Reviews Cancer, 11 (2011), 573-587.
doi: 10.1038/nrc3078.
Google Scholar
|
[109] |
R. G. Sargent, Verification and validation of simulation models, Proceedings of the 2009 Winter Simulation Conference (WSC), 2009,162–176.
doi: 10.1109/WSC.2011.6147750.
Google Scholar
|
[110] |
E. Sherer, R. Hannemann, A. Rundell and D. Ramkrishna,
Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models, J. Theoret. Biol., 240 (2006), 648-661.
doi: 10.1016/j.jtbi.2005.11.017.
Google Scholar
|
[111] |
K. Smallbone, R. A. Gatenby, R. J. Gillies, P. K. Maini and D. J. Gavaghan,
Metabolic changes during carcinogenesis: Potential impact on invasiveness, J. Theoret. Biol., 244 (2007), 703-713.
doi: 10.1016/j.jtbi.2006.09.010.
Google Scholar
|
[112] |
J. S. Smith and R. B. Jenkins,
Genetic alterations in adult diffuse glioma: Occurrence, significance, and prognostic implications, Front Biosci., 5 (2000), 213-231.
doi: 10.2741/smith.
Google Scholar
|
[113] |
N. R. Smoll, O. P. Gautschi, B. Schatlo, K. Schaller and D. C. Weber,
Relative survival of patients with supratentorial low-grade gliomas, Neuro-Oncology, 14 (2012), 1062-1069.
doi: 10.1093/neuonc/nos144.
Google Scholar
|
[114] |
S. L. Spencer, M. J. Berryman, J. A. Garcia and D. Abbott,
An ordinary differential equation model for the multistep transformation to cancer, J. Theoret. Biol., 231 (2004), 515-524.
doi: 10.1016/j.jtbi.2004.07.006.
Google Scholar
|
[115] |
K. R. Swanson, C. Bridge, J. Murray and E. C. Alvord Jr.,
Virtual and real brain tumors: Using mathematical modeling to quantify glioma growth and invasion, J. Neurological Sci., 216 (2003), 1-10.
doi: 10.1016/j.jns.2003.06.001.
Google Scholar
|
[116] |
A. Swierniak, M. Kimmel and J. Smieja,
Mathematical modeling as a tool for planning anticancer therapy, European J. Pharmacology, 625 (2009), 108-121.
doi: 10.1016/j.ejphar.2009.08.041.
Google Scholar
|
[117] |
P. Swietach, R. D. Vaughan-Jones, A. L. Harris and A. Hulikova, The chemistry, physiology and pathology of pH in cancer, Phil. Trans. R. Soc. B, 369 (2014).
doi: 10.1098/rstb.2013.0099.
Google Scholar
|
[118] |
Y. Tao and M. Wang,
Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221-2238.
doi: 10.1088/0951-7715/21/10/002.
Google Scholar
|
[119] |
C. Tomasetti and D. Levy, Role of symmetric and asymmetric division of stem cells in developing drug resistance, Proceedings of the National Academy of Sciences, 107, 2010, 16766–16771.
doi: 10.1073/pnas.1007726107.
Google Scholar
|
[120] |
P. Tracqui, Biophysical models of tumour growth, Reports on Progress in Physics, 72 (2009).
doi: 10.1088/0034-4885/72/5/056701.
Google Scholar
|
[121] |
P. Tracqui,
From passive diffusion to active cellular migration in mathematical models of tumour invasion, Acta Biotheoretica, 43 (1995), 443-464.
doi: 10.1007/BF00713564.
Google Scholar
|
[122] |
P. Tracqui and M. Mendjeli,
Modelling three-dimensional growth of brain tumours from time series of scans, Math. Models Methods Appl. Sci., 9 (1999), 581-598.
doi: 10.1142/S0218202599000300.
Google Scholar
|
[123] |
A. Vazquez and Z. N. Oltvai, Molecular crowding defines a common origin for the warburg effect in proliferating cells and the lactate threshold in muscle physiology, PloS one, 6 (2011).
doi: 10.1371/journal.pone.0019538.
Google Scholar
|
[124] |
G. Vilanova, I. Colominas and H. Gomez, A mathematical model of tumour angiogenesis: Growth, regression and regrowth, J. Royal Society Interface, 14 (2017).
doi: 10.1098/rsif.2016.0918.
Google Scholar
|
[125] |
M. Villasana and A. Radunskaya,
A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270-294.
doi: 10.1007/s00285-003-0211-0.
Google Scholar
|
[126] |
R. Wasserman, R. Acharya, C. Sibata and K. Shin,
A patient-specific in vivo tumor model, Math. Biosci., 136 (1996), 111-140.
doi: 10.1016/0025-5564(96)00045-4.
Google Scholar
|
[127] |
S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini,
Three-dimensional multispecies nonlinear tumor growth–I: Model and numerical method, J. Theoret. Biol., 253 (2008), 524-543.
doi: 10.1016/j.jtbi.2008.03.027.
Google Scholar
|
[128] |
D. Wodarz and N. L. Komarova, Dynamics of Cancer: Mathematical Foundations of Oncology, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.
doi: 10.1142/8973.
Google Scholar
|
[129] |
D. E. Woodward, J. Cook, P. Tracqui, G. Cruywagen, J. Murray and E. Alvord Jr.,
A mathematical model of glioma growth: The effect of extent of surgical resection, Cell Proliferation, 29 (1996), 269-288.
doi: 10.1111/j.1365-2184.1996.tb01580.x.
Google Scholar
|
[130] |
P.-H. Wu, A. Giri, S. X. Sun and D. Wirtz, Three-dimensional cell migration does not follow a random walk, Proceedings of the National Academy of Sciences, 11, 2014, 3949–3954.
doi: 10.1073/pnas.1318967111.
Google Scholar
|