
-
Previous Article
Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation
- DCDS-S Home
- This Issue
-
Next Article
What mathematical models can or cannot do in glioma description and understanding
Paradoxes of vulnerability to predation in biological dynamics and mediate versus immediate causality
Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, IJLRD, 75005 Paris, France, Le Fontenil, Saint-Sulpice-sur-Rille, F-61300, France |
The causality scheme of an (essentially non symmetric) predator-prey system involves automaticaly advantages and disadvantages highly dependent on time. We study systems with one predator and one or two preys furnishing issues which involve mediate and inmediate causality (naturally associated with the attractor and the previous transient). The issues are highly dependent on the parameter accounting for the vulnerability of the preys. When the vulnerability is small, an increase of it implies a (demographic) disadvantage for the preys, but, when it is large (involving periodic cycles) an increase turnes out in an advantage because of the rarefaction of predators (this is associated with average populations on the periodic cycles). When two preys with different vulnerability are present, the most vulnerable may desappear (i. e. the attractor does not contain such prey). This phenomenon only occurs when the less vulnerable prey is nevertheless able to support the predator; otherwise, this one keeps eating anyway the other preys. The mechanism of such patterns are better described in terms of attractors and stability than in terms of advantages versus disadvantages (which are drastically dependent on the viewpoints of the three species).
References:
[1] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[2] |
J-P. Françoise, Oscillations en biologie, Analyse Qualitative et Modèles, Mathématiques & Applications, 46, Springer-Verlag, Berlin, 2005.
doi: 10.1007/3-540-37670-4. |
[3] |
A. Klebanoff and A. Hastings,
Chaos in three-species food chains, J. Math. Biol., 32 (1994), 427-451.
doi: 10.1007/BF00160167. |
[4] |
P. Lherminier and E. Sanchez-Palencia, Remarks and examples on transient processes and attractors in biological evolution, Proceedings of the 2014 Madrid Conference on Applied Mathematics, Electron. J. Differ. Equ. Conf., 22, Texas State Univ., San Marcos, TX, 2015, 63 = -77. |
[5] |
C. Lobry, Modèles déterministes en Dynamique des Populations, Ecole CIMPA Saint Louis du Sénégal, 2001. Google Scholar |
[6] |
K. S. McCann,
The diversity - stability debate, Nature, 405 (2000), 228-233.
doi: 10.1038/35012234. |
[7] |
J. D. Murray, Mathematical Biology. Ⅰ: An Introduction, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.
doi: 10.1007/b98868. |
[8] |
K. Sigmund, Kolmogorov and population dynamics, in Kolmogorov's Heritage in Mathemetics, Springer, Berlin, 2007,177–186.
doi: 10.1007/978-3-540-36351-4_9. |
[9] |
S. Smale,
On the differential equations of species in competition, J. Math. Biol., 3 (1976), 5-7.
doi: 10.1007/BF00307854. |
[10] |
A. Vidal, Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcation, Proceedings of the 6th AIMS International Conference, 2007, 1021–1030. |
show all references
References:
[1] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[2] |
J-P. Françoise, Oscillations en biologie, Analyse Qualitative et Modèles, Mathématiques & Applications, 46, Springer-Verlag, Berlin, 2005.
doi: 10.1007/3-540-37670-4. |
[3] |
A. Klebanoff and A. Hastings,
Chaos in three-species food chains, J. Math. Biol., 32 (1994), 427-451.
doi: 10.1007/BF00160167. |
[4] |
P. Lherminier and E. Sanchez-Palencia, Remarks and examples on transient processes and attractors in biological evolution, Proceedings of the 2014 Madrid Conference on Applied Mathematics, Electron. J. Differ. Equ. Conf., 22, Texas State Univ., San Marcos, TX, 2015, 63 = -77. |
[5] |
C. Lobry, Modèles déterministes en Dynamique des Populations, Ecole CIMPA Saint Louis du Sénégal, 2001. Google Scholar |
[6] |
K. S. McCann,
The diversity - stability debate, Nature, 405 (2000), 228-233.
doi: 10.1038/35012234. |
[7] |
J. D. Murray, Mathematical Biology. Ⅰ: An Introduction, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.
doi: 10.1007/b98868. |
[8] |
K. Sigmund, Kolmogorov and population dynamics, in Kolmogorov's Heritage in Mathemetics, Springer, Berlin, 2007,177–186.
doi: 10.1007/978-3-540-36351-4_9. |
[9] |
S. Smale,
On the differential equations of species in competition, J. Math. Biol., 3 (1976), 5-7.
doi: 10.1007/BF00307854. |
[10] |
A. Vidal, Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcation, Proceedings of the 6th AIMS International Conference, 2007, 1021–1030. |





[1] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[2] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[3] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[4] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[5] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[6] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[7] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[8] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[9] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[10] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[11] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[12] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[13] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[14] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[15] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[16] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[17] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[18] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[19] |
Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020362 |
[20] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]