doi: 10.3934/dcdss.2020186

Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation

1. 

School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China

2. 

Mathematics Department, The University of Massachusetts, North Dartmouth, MA 02747, USA

3. 

Mathematics Department, The University of Tennessee, Knoxville, TN 37996, USA

4. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

* Corresponding author: swise1@utk.edu

Received  April 2018 Published  November 2019

Fund Project: C. Wang was supported by NSF grant DMS-1418689. S.M. Wise was supported by NSF grants DMS-1418692 and DMS-1719854

The existence and uniqueness of Gevrey regularity solutions for the functionalized Cahn-Hilliard (FCH) and Cahn-Hilliard-Willmore (CHW) equations are established. The energy dissipation law yields a uniform-in-time $ H^2 $ bound of the solution, and the polynomial patterns of the nonlinear terms enable one to derive a local-in-time solution with Gevrey regularity. A careful calculation reveals that the existence time interval length depends on the $ H^3 $ norm of the initial data. A further detailed estimate for the original PDE system indicates a uniform-in-time $ H^3 $ bound. Consequently, a global-in-time solution becomes available with Gevrey regularity.

Citation: Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020186
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975.   Google Scholar
[2]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coursening, Acta. Metall., 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[3]

A. Biswas and D. Swanson, Existence and generalized Gevrey regularity of solutions to the Kuramoto-Sivashinsky equation in $R^n$, J. Differential Equations, 240 (2007), 145-163.  doi: 10.1016/j.jde.2007.05.022.  Google Scholar

[4]

A. Biswas and D. Swanson, Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted $\ell_p$ initial data, Indiana Univ. Math. J., 56 (2007), 1157-1188.  doi: 10.1512/iumj.2007.56.2891.  Google Scholar

[5]

Z. BradshawZ. Grujic and I. Kukavica, Local analyticity radii of solutions to the 3D Navier-Stokes equations with locally analytic forcing, J. Differential Equations, 259 (2015), 3955-3975.  doi: 10.1016/j.jde.2015.05.009.  Google Scholar

[6]

J. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.  doi: 10.1016/0001-6160(61)90182-1.  Google Scholar

[7]

J. Cahn and J. Hilliard, Free energy of a nonuniform system. Ⅰ: Interfacial free energy, J. Chem. Phys., 28 (1958). doi: 10.1063/1.1744102.  Google Scholar

[8]

C. CaoM. Rammaha and E. Titi, Gevrey regularity for nonlinear analytic parabolic equations on the sphere, J. Dynam. Differential Equations, 12 (2000), 411-433.  doi: 10.1023/A:1009072526324.  Google Scholar

[9]

F. Chen and J. Shen, Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications, J. Comput. Phys., 231 (2012), 5016-5028.  doi: 10.1016/j.jcp.2012.03.001.  Google Scholar

[10]

N. ChenC. Wang and S. Wise, Global-in-time Gevrey regularity solution for a class of bistable gradient flows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1689-1711.  doi: 10.3934/dcdsb.2016018.  Google Scholar

[11]

Y. ChenJ. LowengrubJ. ShenC. Wang and S. Wise, Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization, J. Comput. Phys., 365 (2018), 56-73.  doi: 10.1016/j.jcp.2018.03.024.  Google Scholar

[12]

A. ChristliebJ. JonesK. PromislowB. Wetton and M. Willoughby, High accuracy solutions to energy gradient flows from material science models, J. Comput. Phys., 257 (2014), 193-215.  doi: 10.1016/j.jcp.2013.09.049.  Google Scholar

[13]

S. Dai and K. Promislow, Geometric evolution of bilayers under the functionalized Cahn–Hilliard equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20pp. doi: 10.1098/rspa.2012.0505.  Google Scholar

[14]

A. DoelmanG. HayrapetyanK. Promislow and B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized Cahn-Hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640-3677.  doi: 10.1137/13092705X.  Google Scholar

[15]

A. Eden and V. Kalantarov, The convective Cahn-Hilliard equation, Appl. Math. Lett., 20 (2007), 455-461.  doi: 10.1016/j.aml.2006.05.014.  Google Scholar

[16]

W. FengZ. GuanJ. LowengrubC. WangS. Wise and Y. Chen, A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis, J. Sci. Comput., 76 (2018), 1938-1967.  doi: 10.1007/s10915-018-0690-1.  Google Scholar

[17]

W. FengZ. GuoJ. Lowengrub and S. Wise, A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids, J. Comput. Phys., 352 (2018), 463-497.  doi: 10.1016/j.jcp.2017.09.065.  Google Scholar

[18]

A. Ferrari and E. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations, 23 (1998), 1-16.  doi: 10.1080/03605309808821336.  Google Scholar

[19]

C. Foias and R. Temam, Gevrey class regularity for the solution of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.  doi: 10.1016/0022-1236(89)90015-3.  Google Scholar

[20]

N. GavishG. HayrapetyanK. Promislow and L. Yang, Curvature driven flow of bi-layer interfaces, Physica D: Nonlinear Phenomena, 240 (2011), 675-693.  doi: 10.1016/j.physd.2010.11.016.  Google Scholar

[21]

N. GavishJ. JonesZ. XuA. Christlieb and K. Promislow, Variational models of network formation and ion transport: Applications to perfluorosulfonate ionomer membranes, Polymers, 4 (2012), 630-655.  doi: 10.3390/polym4010630.  Google Scholar

[22]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119.  doi: 10.1103/PhysRevLett.65.1116.  Google Scholar

[23]

Z. Grujic and I. Kukavica, Space analyticity for the Navier-Stokes and related equations with initial data in $L^p$, J. Funct. Anal., 152 (1998), 447-466.  doi: 10.1006/jfan.1997.3167.  Google Scholar

[24]

R. GuoY. Xu and Z. Xu, Local discontinuous Galerkin methods for the functionalized Cahn-Hilliard equation, J. Sci. Comput., 63 (2015), 913-937.  doi: 10.1007/s10915-014-9920-3.  Google Scholar

[25]

W. Hsu and T. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Membr. Sci., 13 (1983), 307-326.  doi: 10.1016/S0376-7388(00)81563-X.  Google Scholar

[26]

V. KalantarovB. Levant and E. Titi, Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.  Google Scholar

[27]

I. KukavicaR. TemamV. Vlad and M. Ziane, On the time analyticity radius of the solutions of the two-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 3 (1991), 611-618.  doi: 10.1007/BF01049102.  Google Scholar

[28]

I. KukavicaR. TemamV. Vlad and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data, C. R. Math. Acad. Sci. Paris, 348 (2010), 639-645.  doi: 10.1016/j.crma.2010.03.023.  Google Scholar

[29]

I. Kukavica and V. Vlad, On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Amer. Math. Soc., 137 (2009), 669-677.  doi: 10.1090/S0002-9939-08-09693-7.  Google Scholar

[30]

I. Kukavica and V. Vlad, The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. Syst., 29 (2011), 285-303.  doi: 10.3934/dcds.2011.29.285.  Google Scholar

[31]

I. Kukavica and V. Vlad, On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity, 24 (2011), 765-796.  doi: 10.1088/0951-7715/24/3/004.  Google Scholar

[32]

I. Kukavica and V. Vlad, On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., 11 (2013), 269-292.  doi: 10.4310/CMS.2013.v11.n1.a8.  Google Scholar

[33]

J. LowengrubE. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math., 24 (2013), 691-734.  doi: 10.1017/S0956792513000144.  Google Scholar

[34]

H. Ly and E. Titi, Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy-Prandtl number, J. Nonlinear Sci., 9 (1999), 333-362.  doi: 10.1007/s003329900073.  Google Scholar

[35]

K. Promislow, Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations, Nonlinear Anal., 16 (1991), 959-980.  doi: 10.1016/0362-546X(91)90100-F.  Google Scholar

[36]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409.  doi: 10.1137/080720802.  Google Scholar

[37]

K. Promislow and Q. Wu, Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation, J. Differential Equations, 259 (2015), 3298-3343.  doi: 10.1016/j.jde.2015.04.022.  Google Scholar

[38] J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.   Google Scholar
[39]

R. RyhamF. S. Cohen and R. Eisenberg, A dynamic model of open vesicles in fluids, Commun. Math. Sci., 10 (2012), 1273-1285.  doi: 10.4310/CMS.2012.v10.n4.a12.  Google Scholar

[40]

D. Swanson, Gevrey regularity of certain solutions to the Cahn-Hilliard equation with rough initial data, Methods Appl. Anal., 18 (2011), 417-426.  doi: 10.4310/MAA.2011.v18.n4.a4.  Google Scholar

[41]

S. TorabiJ. LowengrubA. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1337-1359.  doi: 10.1098/rspa.2008.0385.  Google Scholar

[42]

S. Torabi, S. Wise, J. Lowengrub, A. Ratz and A. Voigt, A new method for simulating strongly anisotropic Cahn-Hilliard equations, MST 2007 Conference Proceedings, 3, 2007. Google Scholar

[43]

X. WangL. Ju and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316 (2016), 21-38.  doi: 10.1016/j.jcp.2016.04.004.  Google Scholar

[44]

S. WiseJ. Kim and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, J. Comput. Phys., 226 (2007), 414-446.  doi: 10.1016/j.jcp.2007.04.020.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975.   Google Scholar
[2]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coursening, Acta. Metall., 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[3]

A. Biswas and D. Swanson, Existence and generalized Gevrey regularity of solutions to the Kuramoto-Sivashinsky equation in $R^n$, J. Differential Equations, 240 (2007), 145-163.  doi: 10.1016/j.jde.2007.05.022.  Google Scholar

[4]

A. Biswas and D. Swanson, Gevrey regularity of solutions to the 3-D Navier-Stokes equations with weighted $\ell_p$ initial data, Indiana Univ. Math. J., 56 (2007), 1157-1188.  doi: 10.1512/iumj.2007.56.2891.  Google Scholar

[5]

Z. BradshawZ. Grujic and I. Kukavica, Local analyticity radii of solutions to the 3D Navier-Stokes equations with locally analytic forcing, J. Differential Equations, 259 (2015), 3955-3975.  doi: 10.1016/j.jde.2015.05.009.  Google Scholar

[6]

J. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801.  doi: 10.1016/0001-6160(61)90182-1.  Google Scholar

[7]

J. Cahn and J. Hilliard, Free energy of a nonuniform system. Ⅰ: Interfacial free energy, J. Chem. Phys., 28 (1958). doi: 10.1063/1.1744102.  Google Scholar

[8]

C. CaoM. Rammaha and E. Titi, Gevrey regularity for nonlinear analytic parabolic equations on the sphere, J. Dynam. Differential Equations, 12 (2000), 411-433.  doi: 10.1023/A:1009072526324.  Google Scholar

[9]

F. Chen and J. Shen, Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications, J. Comput. Phys., 231 (2012), 5016-5028.  doi: 10.1016/j.jcp.2012.03.001.  Google Scholar

[10]

N. ChenC. Wang and S. Wise, Global-in-time Gevrey regularity solution for a class of bistable gradient flows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1689-1711.  doi: 10.3934/dcdsb.2016018.  Google Scholar

[11]

Y. ChenJ. LowengrubJ. ShenC. Wang and S. Wise, Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization, J. Comput. Phys., 365 (2018), 56-73.  doi: 10.1016/j.jcp.2018.03.024.  Google Scholar

[12]

A. ChristliebJ. JonesK. PromislowB. Wetton and M. Willoughby, High accuracy solutions to energy gradient flows from material science models, J. Comput. Phys., 257 (2014), 193-215.  doi: 10.1016/j.jcp.2013.09.049.  Google Scholar

[13]

S. Dai and K. Promislow, Geometric evolution of bilayers under the functionalized Cahn–Hilliard equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2013), 20pp. doi: 10.1098/rspa.2012.0505.  Google Scholar

[14]

A. DoelmanG. HayrapetyanK. Promislow and B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized Cahn-Hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640-3677.  doi: 10.1137/13092705X.  Google Scholar

[15]

A. Eden and V. Kalantarov, The convective Cahn-Hilliard equation, Appl. Math. Lett., 20 (2007), 455-461.  doi: 10.1016/j.aml.2006.05.014.  Google Scholar

[16]

W. FengZ. GuanJ. LowengrubC. WangS. Wise and Y. Chen, A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis, J. Sci. Comput., 76 (2018), 1938-1967.  doi: 10.1007/s10915-018-0690-1.  Google Scholar

[17]

W. FengZ. GuoJ. Lowengrub and S. Wise, A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids, J. Comput. Phys., 352 (2018), 463-497.  doi: 10.1016/j.jcp.2017.09.065.  Google Scholar

[18]

A. Ferrari and E. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations, 23 (1998), 1-16.  doi: 10.1080/03605309808821336.  Google Scholar

[19]

C. Foias and R. Temam, Gevrey class regularity for the solution of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.  doi: 10.1016/0022-1236(89)90015-3.  Google Scholar

[20]

N. GavishG. HayrapetyanK. Promislow and L. Yang, Curvature driven flow of bi-layer interfaces, Physica D: Nonlinear Phenomena, 240 (2011), 675-693.  doi: 10.1016/j.physd.2010.11.016.  Google Scholar

[21]

N. GavishJ. JonesZ. XuA. Christlieb and K. Promislow, Variational models of network formation and ion transport: Applications to perfluorosulfonate ionomer membranes, Polymers, 4 (2012), 630-655.  doi: 10.3390/polym4010630.  Google Scholar

[22]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119.  doi: 10.1103/PhysRevLett.65.1116.  Google Scholar

[23]

Z. Grujic and I. Kukavica, Space analyticity for the Navier-Stokes and related equations with initial data in $L^p$, J. Funct. Anal., 152 (1998), 447-466.  doi: 10.1006/jfan.1997.3167.  Google Scholar

[24]

R. GuoY. Xu and Z. Xu, Local discontinuous Galerkin methods for the functionalized Cahn-Hilliard equation, J. Sci. Comput., 63 (2015), 913-937.  doi: 10.1007/s10915-014-9920-3.  Google Scholar

[25]

W. Hsu and T. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Membr. Sci., 13 (1983), 307-326.  doi: 10.1016/S0376-7388(00)81563-X.  Google Scholar

[26]

V. KalantarovB. Levant and E. Titi, Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19 (2009), 133-152.  doi: 10.1007/s00332-008-9029-7.  Google Scholar

[27]

I. KukavicaR. TemamV. Vlad and M. Ziane, On the time analyticity radius of the solutions of the two-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 3 (1991), 611-618.  doi: 10.1007/BF01049102.  Google Scholar

[28]

I. KukavicaR. TemamV. Vlad and M. Ziane, Existence and uniqueness of solutions for the hydrostatic Euler equations on a bounded domain with analytic data, C. R. Math. Acad. Sci. Paris, 348 (2010), 639-645.  doi: 10.1016/j.crma.2010.03.023.  Google Scholar

[29]

I. Kukavica and V. Vlad, On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Amer. Math. Soc., 137 (2009), 669-677.  doi: 10.1090/S0002-9939-08-09693-7.  Google Scholar

[30]

I. Kukavica and V. Vlad, The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. Syst., 29 (2011), 285-303.  doi: 10.3934/dcds.2011.29.285.  Google Scholar

[31]

I. Kukavica and V. Vlad, On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity, 24 (2011), 765-796.  doi: 10.1088/0951-7715/24/3/004.  Google Scholar

[32]

I. Kukavica and V. Vlad, On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., 11 (2013), 269-292.  doi: 10.4310/CMS.2013.v11.n1.a8.  Google Scholar

[33]

J. LowengrubE. Titi and K. Zhao, Analysis of a mixture model of tumor growth, European J. Appl. Math., 24 (2013), 691-734.  doi: 10.1017/S0956792513000144.  Google Scholar

[34]

H. Ly and E. Titi, Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy-Prandtl number, J. Nonlinear Sci., 9 (1999), 333-362.  doi: 10.1007/s003329900073.  Google Scholar

[35]

K. Promislow, Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations, Nonlinear Anal., 16 (1991), 959-980.  doi: 10.1016/0362-546X(91)90100-F.  Google Scholar

[36]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409.  doi: 10.1137/080720802.  Google Scholar

[37]

K. Promislow and Q. Wu, Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation, J. Differential Equations, 259 (2015), 3298-3343.  doi: 10.1016/j.jde.2015.04.022.  Google Scholar

[38] J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.   Google Scholar
[39]

R. RyhamF. S. Cohen and R. Eisenberg, A dynamic model of open vesicles in fluids, Commun. Math. Sci., 10 (2012), 1273-1285.  doi: 10.4310/CMS.2012.v10.n4.a12.  Google Scholar

[40]

D. Swanson, Gevrey regularity of certain solutions to the Cahn-Hilliard equation with rough initial data, Methods Appl. Anal., 18 (2011), 417-426.  doi: 10.4310/MAA.2011.v18.n4.a4.  Google Scholar

[41]

S. TorabiJ. LowengrubA. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1337-1359.  doi: 10.1098/rspa.2008.0385.  Google Scholar

[42]

S. Torabi, S. Wise, J. Lowengrub, A. Ratz and A. Voigt, A new method for simulating strongly anisotropic Cahn-Hilliard equations, MST 2007 Conference Proceedings, 3, 2007. Google Scholar

[43]

X. WangL. Ju and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316 (2016), 21-38.  doi: 10.1016/j.jcp.2016.04.004.  Google Scholar

[44]

S. WiseJ. Kim and J. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, J. Comput. Phys., 226 (2007), 414-446.  doi: 10.1016/j.jcp.2007.04.020.  Google Scholar

[1]

Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018

[2]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[3]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[4]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[5]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[6]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[7]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[8]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[9]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[10]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[11]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[12]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[13]

Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859

[14]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[15]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[16]

Hirotada Honda. Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks & Heterogeneous Media, 2017, 12 (1) : 25-57. doi: 10.3934/nhm.2017002

[17]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[18]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[19]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[20]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (15)
  • HTML views (45)
  • Cited by (0)

[Back to Top]