doi: 10.3934/dcdss.2020187

Fractional Cauchy problems and applications

1. 

Department of Mathematics, The University of Jordan, Amman, Jordan

2. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato, 5 – 40126 Bologna, Italy

3. 

Takarazuka, Hirai Sanso 12-13,665-0817, Japan

Received  August 2018 Revised  April 2019 Published  November 2019

We are devoted to fractional abstract Cauchy problems. Required conditions on spaces and operators are given guaranteeing existence and uniqueness of solutions. An inverse problem is also studied. Applications to partial differential equations are given to illustrate the abstract fractional degenerate differential problems.

Citation: Mohammed AL Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems and applications. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020187
References:
[1]

M. Al HoraniM. FabrizioA. Favini and H. Tanabe, Direct and inverse problems for degenerate differential equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., 64 (2018), 227-241.  doi: 10.1007/s11565-018-0303-9.  Google Scholar

[2]

E. G. Bazhlekova, Fractional evolution equations in Banach spaces, Dissertation, Eindhoven University of Technology in Eindhoven, 2001.  Google Scholar

[3]

A. Favaron, A. Favini and H. Tanabe, Perturbation methods for inverse problems on degenerate differential equations, preprint. Google Scholar

[4]

A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation methods and identification problems for degenerate evolution systems, in Advances in Mathematics, Ed. Acad. Romȃne, Bucharest, 2013,145–156.  Google Scholar

[5]

A. FaviniA. Lorenzi and H. Tanabe, Degenerate integro-differential equations of parabolic type with Robin boundary conditions: $L^p$-theory, J. Math. Anal. Appl., 447 (2017), 579-665.  doi: 10.1016/j.jmaa.2016.10.029.  Google Scholar

[6]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse degenerate parabolic differential equations with multi-valued operators, Electron. J. Differential Equations, 2015, 22pp.  Google Scholar

[7]

A. FaviniA. Lorenzi and H. Tanabe, Singular integro-differential equations of parabolic type, Adv. Differential Equations, 7 (2002), 769-798.   Google Scholar

[8]

A. Favini and H. Tanabe, Degenerate differential equations of parabolic type and inverse problems, Proceedings of Seminar on Partial Differential Equations, Osaka University, Osaka, 2015, 89–100. Google Scholar

[9]

A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl., 163 (1993), 353-384.  doi: 10.1007/BF01759029.  Google Scholar

[10]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 215, Marcel Dekker, Inc., New York, 1999.  Google Scholar

[11]

D. Guidetti, On maximal regularity for the Cauchy-Dirichlet mixed parabolic problem with fractional time derivative, Bruno Pini Mathematical Analysis Seminar, 9, Univ. Bologna, Bologna, 2018,147–157.  Google Scholar

[12]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Die Grundlehren der Mathematischen Wissenschaften, 2, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[13]

J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5–68.  Google Scholar

[14]

A. Lorenzi, An Introduction to Identification Problems Via Functional Analysis, Inverse and Ill-Posed Problems Series, Utrecht, Netherlands, 2001. doi: 10.1017/CBO9781139168724.  Google Scholar

[15]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

show all references

References:
[1]

M. Al HoraniM. FabrizioA. Favini and H. Tanabe, Direct and inverse problems for degenerate differential equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., 64 (2018), 227-241.  doi: 10.1007/s11565-018-0303-9.  Google Scholar

[2]

E. G. Bazhlekova, Fractional evolution equations in Banach spaces, Dissertation, Eindhoven University of Technology in Eindhoven, 2001.  Google Scholar

[3]

A. Favaron, A. Favini and H. Tanabe, Perturbation methods for inverse problems on degenerate differential equations, preprint. Google Scholar

[4]

A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation methods and identification problems for degenerate evolution systems, in Advances in Mathematics, Ed. Acad. Romȃne, Bucharest, 2013,145–156.  Google Scholar

[5]

A. FaviniA. Lorenzi and H. Tanabe, Degenerate integro-differential equations of parabolic type with Robin boundary conditions: $L^p$-theory, J. Math. Anal. Appl., 447 (2017), 579-665.  doi: 10.1016/j.jmaa.2016.10.029.  Google Scholar

[6]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse degenerate parabolic differential equations with multi-valued operators, Electron. J. Differential Equations, 2015, 22pp.  Google Scholar

[7]

A. FaviniA. Lorenzi and H. Tanabe, Singular integro-differential equations of parabolic type, Adv. Differential Equations, 7 (2002), 769-798.   Google Scholar

[8]

A. Favini and H. Tanabe, Degenerate differential equations of parabolic type and inverse problems, Proceedings of Seminar on Partial Differential Equations, Osaka University, Osaka, 2015, 89–100. Google Scholar

[9]

A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl., 163 (1993), 353-384.  doi: 10.1007/BF01759029.  Google Scholar

[10]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 215, Marcel Dekker, Inc., New York, 1999.  Google Scholar

[11]

D. Guidetti, On maximal regularity for the Cauchy-Dirichlet mixed parabolic problem with fractional time derivative, Bruno Pini Mathematical Analysis Seminar, 9, Univ. Bologna, Bologna, 2018,147–157.  Google Scholar

[12]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Die Grundlehren der Mathematischen Wissenschaften, 2, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[13]

J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5–68.  Google Scholar

[14]

A. Lorenzi, An Introduction to Identification Problems Via Functional Analysis, Inverse and Ill-Posed Problems Series, Utrecht, Netherlands, 2001. doi: 10.1017/CBO9781139168724.  Google Scholar

[15]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[1]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[2]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[3]

Hernan R. Henriquez. Generalized solutions for the abstract singular Cauchy problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 955-976. doi: 10.3934/cpaa.2009.8.955

[4]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations & Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[5]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[6]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[7]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[8]

Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057

[9]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[10]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[11]

Abderrahmane Habbal, Moez Kallel, Marwa Ouni. Nash strategies for the inverse inclusion Cauchy-Stokes problem. Inverse Problems & Imaging, 2019, 13 (4) : 827-862. doi: 10.3934/ipi.2019038

[12]

Felipe Linares, M. Panthee. On the Cauchy problem for a coupled system of KdV equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 417-431. doi: 10.3934/cpaa.2004.3.417

[13]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[14]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[15]

Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915

[16]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[17]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[18]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[19]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[20]

Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (28)
  • HTML views (30)
  • Cited by (0)

[Back to Top]