doi: 10.3934/dcdss.2020189

Polarization dynamics in a resonant optical medium with initial coherence between degenerate states

1. 

University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

2. 

Rensselaer Polytechnic Institute, Troy, NY 12180, USA

3. 

University of Arizona, Tucson, AZ 85721-0089, USA

* Corresponding author: Katherine A. Newhall

Received  July 2018 Revised  December 2018 Published  November 2019

Fund Project: The second author is supported by National Science Foundation (NSF) grant number DMS1615859

We investigate the polarization switching phenomenon for a one-soliton solution to the $ \Lambda $-configuration Maxwell-Bloch equations in the case of initial coherence in the material, corresponding to the forbidden transition between the two lower energy levels. We find two polarization states that are stationary. They are not the purely right- and left-circularly polarized solitons, as in the case of zero initial coherence, but rather two mixed, elliptically polarized, states. These polarization states, of which only one is asymptotically stable, depend on both the initial population levels of the lower states and the coherence value. We also find the existence of superluminal soliton propagation, but through numerical simulations show this solution to be unstable, and therefore likely not realizable physically.

Citation: Katherine A. Newhall, Gregor Kovačič, Ildar Gabitov. Polarization dynamics in a resonant optical medium with initial coherence between degenerate states. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020189
References:
[1]

M. J. AblowitzD. J. Kaup and A. C. Newell, Coherent pulse propagation, a dispersive, irreversible phenomenon, J. Math. Phys., 15 (1974), 1852-1858.  doi: 10.1063/1.1666551.  Google Scholar

[2]

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Dover Publications, New York, 1987. Google Scholar

[3]

E. P. Atkins, P. R. Kramer, G. Kovačič and I. R. Gabitov, Stochastic pulse switching in a degenerate resonant optical medium, Phys. Rev. A, 85 (2012). doi: 10.1103/PhysRevA.85.043834.  Google Scholar

[4]

A. M. Basharov and A. I. Maimistov, Self-induced transparency when the resonance energy levels are degenerate, Sov. Phys. Jetp, 60 (1984), 913-919.   Google Scholar

[5]

L. A. BolshovV. V. Likhanskii and M. I. Persiantsev, Contribution to the theory of coherent interaction of light pulses with resonant multilevel media, Sov. Phys. Jetp, 57 (1983), 524-528.   Google Scholar

[6] R. W. Boyd, Nonlinear Optics, Elsevier/Academic Press, Amsterdam, 2008.  doi: 10.1016/B978-0-12-121682-5.X5000-7.  Google Scholar
[7] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge Studies in Modern Optics, 9, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139167994.  Google Scholar
[8]

J. A. ByrneI. R. Gabitov and G. Kovačič, Polarization switching of light interacting with a degenerate two-level optical medium, Phys. D, 186 (2003), 69-92.  doi: 10.1016/S0167-2789(03)00245-8.  Google Scholar

[9]

S. ChakravartyB. Prinari and M. J. Ablowitz, Inverse scattering transform for 3-level coupled Maxwell-Bloch equations with inhomogeneous broadening, Phys. D, 278-279 (2014), 58-78.  doi: 10.1016/j.physd.2014.04.003.  Google Scholar

[10]

V. Chernyak and V. Rupasov, Polarization effects in self-induced transparency theory, Phys. Lett. A, 108 (1985), 434-436.  doi: 10.1016/0375-9601(85)90032-5.  Google Scholar

[11]

B. D. Clader and J. H. Eberly, Two-pulse propagation in a partially phase-coherent medium, Phys. Rev. A, 78 (2008). doi: 10.1103/PhysRevA.78.033803.  Google Scholar

[12]

I. GabitovV. Zakharov and A. Mikhailov, The Maxwell-Bloch equation and the method of the inverse scattering problem, Teoret. Mat. Fiz., 63 (1985), 11-31.   Google Scholar

[13]

M. J. Konopnicki and J. H. Eberly, Simultaneous propagation of short different-wavelength optical pulses,, Phys. Rev. A, 24 (1981), 2567-2583.  doi: 10.1103/PhysRevA.24.2567.  Google Scholar

[14]

M. J. KonopnickiP. D. Drummond and J. H. Eberly, Theory of lossless propagation of simultaneous different-wavelength optical pulses, Opt. Commun., 36 (1981), 313-316.  doi: 10.1016/0030-4018(81)90382-5.  Google Scholar

[15]

G. Lamb, Coherent-optical-pulse propagation as an inverse problem, Phys. Rev. A, 9 (1974), 422-430.  doi: 10.1103/PhysRevA.9.422.  Google Scholar

[16]

P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math, 21 (1968), 467-490.  doi: 10.1002/cpa.3160210503.  Google Scholar

[17]

S. Li, G. Biondini, G. Kovačič and I. Gabitov, Inverse-scattering transform for the $\Lambda$-configuration Maxwell-Bloch system with nonzero background, work in progress. Google Scholar

[18]

A. Ma$\breve{\rm i}$mistov and A. M. Basharov, Present state of self-induced transparency theory, Phys. Reports - Rev. Sect. Phys. Lett., 191 (1990), 1-108.   Google Scholar

[19]

A. I. Ma$\breve{\rm i}$mistov and Y. M. Sklyarov, The coherent interaction of light-pulses with a 3-level medium, Optika I Spektroskopiya, 59 (1985), 760-763.   Google Scholar

[20]

A. I. Ma$\breve{\rm i}$mistov, Rigorous theory of self-induced transparency in the case of a double resonance in a three-level medium, Sov. J. Quantum Electron., 14 (1984), 385-389.  doi: 10.1070/QE1984v014n03ABEH004908.  Google Scholar

[21]

A. C. Newell and J. V. Moloney, Nonlinear Optics, Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company, Redwood City, CA, 1992.  Google Scholar

[22]

K. A. NewhallE. P. AtkinsP. R. KramerG. Kovačič and I. R. Gabitov, Random polarization dynamics in a resonant optical medium, Optics Lett., 38 (2013), 893-895.  doi: 10.1364/OL.38.000893.  Google Scholar

[23]

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984.  Google Scholar

[24]

A. V. Rybin, Application of the Darboux transformation to inverse problems with variable spectral parameters, J. Phys. A, 24 (1991), 5235-5243.  doi: 10.1088/0305-4470/24/22/007.  Google Scholar

[25]

K. Shimoda, Introduction to Laser Physics, Springer Series in Optical Sciences, 44, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-662-13548-8.  Google Scholar

[26]

L. J. WangA. Kuzmich and A. Dogariu, Gain-assisted superluminal light propagation, Nature, 406 (2000), 277-279.  doi: 10.1038/35018520.  Google Scholar

show all references

References:
[1]

M. J. AblowitzD. J. Kaup and A. C. Newell, Coherent pulse propagation, a dispersive, irreversible phenomenon, J. Math. Phys., 15 (1974), 1852-1858.  doi: 10.1063/1.1666551.  Google Scholar

[2]

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Dover Publications, New York, 1987. Google Scholar

[3]

E. P. Atkins, P. R. Kramer, G. Kovačič and I. R. Gabitov, Stochastic pulse switching in a degenerate resonant optical medium, Phys. Rev. A, 85 (2012). doi: 10.1103/PhysRevA.85.043834.  Google Scholar

[4]

A. M. Basharov and A. I. Maimistov, Self-induced transparency when the resonance energy levels are degenerate, Sov. Phys. Jetp, 60 (1984), 913-919.   Google Scholar

[5]

L. A. BolshovV. V. Likhanskii and M. I. Persiantsev, Contribution to the theory of coherent interaction of light pulses with resonant multilevel media, Sov. Phys. Jetp, 57 (1983), 524-528.   Google Scholar

[6] R. W. Boyd, Nonlinear Optics, Elsevier/Academic Press, Amsterdam, 2008.  doi: 10.1016/B978-0-12-121682-5.X5000-7.  Google Scholar
[7] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Cambridge Studies in Modern Optics, 9, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139167994.  Google Scholar
[8]

J. A. ByrneI. R. Gabitov and G. Kovačič, Polarization switching of light interacting with a degenerate two-level optical medium, Phys. D, 186 (2003), 69-92.  doi: 10.1016/S0167-2789(03)00245-8.  Google Scholar

[9]

S. ChakravartyB. Prinari and M. J. Ablowitz, Inverse scattering transform for 3-level coupled Maxwell-Bloch equations with inhomogeneous broadening, Phys. D, 278-279 (2014), 58-78.  doi: 10.1016/j.physd.2014.04.003.  Google Scholar

[10]

V. Chernyak and V. Rupasov, Polarization effects in self-induced transparency theory, Phys. Lett. A, 108 (1985), 434-436.  doi: 10.1016/0375-9601(85)90032-5.  Google Scholar

[11]

B. D. Clader and J. H. Eberly, Two-pulse propagation in a partially phase-coherent medium, Phys. Rev. A, 78 (2008). doi: 10.1103/PhysRevA.78.033803.  Google Scholar

[12]

I. GabitovV. Zakharov and A. Mikhailov, The Maxwell-Bloch equation and the method of the inverse scattering problem, Teoret. Mat. Fiz., 63 (1985), 11-31.   Google Scholar

[13]

M. J. Konopnicki and J. H. Eberly, Simultaneous propagation of short different-wavelength optical pulses,, Phys. Rev. A, 24 (1981), 2567-2583.  doi: 10.1103/PhysRevA.24.2567.  Google Scholar

[14]

M. J. KonopnickiP. D. Drummond and J. H. Eberly, Theory of lossless propagation of simultaneous different-wavelength optical pulses, Opt. Commun., 36 (1981), 313-316.  doi: 10.1016/0030-4018(81)90382-5.  Google Scholar

[15]

G. Lamb, Coherent-optical-pulse propagation as an inverse problem, Phys. Rev. A, 9 (1974), 422-430.  doi: 10.1103/PhysRevA.9.422.  Google Scholar

[16]

P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math, 21 (1968), 467-490.  doi: 10.1002/cpa.3160210503.  Google Scholar

[17]

S. Li, G. Biondini, G. Kovačič and I. Gabitov, Inverse-scattering transform for the $\Lambda$-configuration Maxwell-Bloch system with nonzero background, work in progress. Google Scholar

[18]

A. Ma$\breve{\rm i}$mistov and A. M. Basharov, Present state of self-induced transparency theory, Phys. Reports - Rev. Sect. Phys. Lett., 191 (1990), 1-108.   Google Scholar

[19]

A. I. Ma$\breve{\rm i}$mistov and Y. M. Sklyarov, The coherent interaction of light-pulses with a 3-level medium, Optika I Spektroskopiya, 59 (1985), 760-763.   Google Scholar

[20]

A. I. Ma$\breve{\rm i}$mistov, Rigorous theory of self-induced transparency in the case of a double resonance in a three-level medium, Sov. J. Quantum Electron., 14 (1984), 385-389.  doi: 10.1070/QE1984v014n03ABEH004908.  Google Scholar

[21]

A. C. Newell and J. V. Moloney, Nonlinear Optics, Advanced Topics in the Interdisciplinary Mathematical Sciences, Addison-Wesley Publishing Company, Redwood City, CA, 1992.  Google Scholar

[22]

K. A. NewhallE. P. AtkinsP. R. KramerG. Kovačič and I. R. Gabitov, Random polarization dynamics in a resonant optical medium, Optics Lett., 38 (2013), 893-895.  doi: 10.1364/OL.38.000893.  Google Scholar

[23]

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984.  Google Scholar

[24]

A. V. Rybin, Application of the Darboux transformation to inverse problems with variable spectral parameters, J. Phys. A, 24 (1991), 5235-5243.  doi: 10.1088/0305-4470/24/22/007.  Google Scholar

[25]

K. Shimoda, Introduction to Laser Physics, Springer Series in Optical Sciences, 44, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-662-13548-8.  Google Scholar

[26]

L. J. WangA. Kuzmich and A. Dogariu, Gain-assisted superluminal light propagation, Nature, 406 (2000), 277-279.  doi: 10.1038/35018520.  Google Scholar

Figure 1.  The solution to the Maxwell-Bloch equations appearing in (10), plotted in the lab frame of reference for an initially circularly-polarized soliton pulse ($ a = 1 $, $ b = 0 $, $ \beta = 1/3 $). With the virtual polarization initially $ \mu_0 = 0.05 $, and the initial population offset $ \alpha = \tfrac12 $, the soliton switches its polarization to a mixed-polarization state
Figure 2.  The solution to the Maxwell-Bloch equations appearing in (8) plotted in the lab frame of reference for an initially linearly-polarized soliton pulse ($ a = 1/2 $, $ b = 1/2 $, $ \beta = 1/3 $). The color bar is the same for each row. The other parameters are $ \alpha = -0.25 $, and $ \mu_0 = 0.4 $. The corresponding value of $ \sin(2\eta) $ for this soliton as it propagates is shown in Fig. 3(b)
Figure 3.  (a) The limiting value of $ \sin(2\eta) $ for the stable invariant polarization state given by the expression in (19), as a function of $ \alpha $ for the indicated values of $ \mu_0 $ starting at 0 and increasing by $ 0.1 $ until $ \mu_0 = 0.7 $. (b) Dynamics of $ \sin(2\eta) $ approaching its limiting value in (19) for the soliton depicted in Fig. 2, $ \alpha = -0.25 $, and $ \mu_0 = 0.4 $
Figure 4.  The dynamics of the angles $ \eta $ and $ \psi $ for the case of a soliton with the eigenvalue $ \lambda_0 = \tfrac13 + \tfrac13i $. Two cases are shown, one for $ \mu_0 = 0 $ and one for $ \mu_0 = 0.02 $ showing the difference between the behavior of the angle $ \psi $. The other parameters are $ a = 1 $, $ b = \tfrac{1}{10} $, and $ \alpha = \tfrac12 $
Figure 5.  An unphysical solution to the Maxwell-Bloch equations appearing in (8) plotted in the lab frame of reference for an initially linearly polarized soliton pulse ($ a = 1/2 $, $ b = 1/2 $, $ \beta = 1/3 $). The color bar is the same for each row. The other parameters are $ \alpha = 0.75 $, and $ \mu_0 = 0.7 $. The dashed lines in the top row are drawn at the speed of light ($ c = 1 $) highlighting the fact that the soliton is propagating faster than the speed of light
Figure 6.  The electric-field envelopes computed by numerically solving the Maxwell-Bloch equations in (1) using the method described in Appendix C with $ \Delta x = \Delta t = 0.05 $. The faster-than-light soliton solution shown in Fig. 5 ($ a = 1/2 $, $ b = 1/2 $, $ \beta = 1/3 $, $ \alpha = 0.75 $, and $ \mu_0 = 0.7 $) is unstable and sheds radiation, slowing down to propagate at the speed of light (the dashed line)
[1]

Frank Jochmann. Decay of the polarization field in a Maxwell Bloch system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 663-676. doi: 10.3934/dcds.2003.9.663

[2]

M. D. Todorov. Polarization dynamics during takeover collisions of solitons in systems of coupled nonlinears Schödinger equations. Conference Publications, 2011, 2011 (Special) : 1385-1394. doi: 10.3934/proc.2011.2011.1385

[3]

Grégoire Allaire, Carlos Conca, Luis Friz, Jaime H. Ortega. On Bloch waves for the Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 1-28. doi: 10.3934/dcdsb.2007.7.1

[4]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[5]

B. Bidégaray-Fesquet, F. Castella, Pierre Degond. From Bloch model to the rate equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 1-26. doi: 10.3934/dcds.2004.11.1

[6]

Charalampos Evripidou, Pavlos Kassotakis, Pol Vanhaecke. Integrable reductions of the dressing chain. Journal of Computational Dynamics, 2019, 6 (2) : 277-306. doi: 10.3934/jcd.2019014

[7]

Yvan Martel, Frank Merle. Refined asymptotics around solitons for gKdV equations. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 177-218. doi: 10.3934/dcds.2008.20.177

[8]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[9]

Yaozhong Hu, David Nualart, Xiaobin Sun, Yingchao Xie. Smoothness of density for stochastic differential equations with Markovian switching. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3615-3631. doi: 10.3934/dcdsb.2018307

[10]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[11]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[12]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[13]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[14]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[15]

Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059

[16]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[17]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[18]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[19]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[20]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (31)
  • Cited by (0)

[Back to Top]