doi: 10.3934/dcdss.2020196

Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures

1. 

Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

2. 

Department of Mathematics and Statistics, University of Helsinki, P.O. 68 (Pietari Kalmin katu 5), FI-00014 Helsinki, Finland

3. 

Department of Mathematics and Statistics, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada

4. 

Department of Mathematics, Computer Science and Physics, University of Udine, via delle Scienze 206, I-33100 Udine, Italy

* Corresponding author: Rossana Vermiglio

Received  January 2019 Revised  May 2019 Published  December 2019

Fund Project: The research of the second author was supported by Domast (Doctoral Programme in Mathematics and Statistics, University of Helsinki), and by the Centre of Excellence in Analysis and Dynamics Research, Academy of Finland. F.S. and R.V. are members of the INdAM Research group GNCS, and of CDLab (Computational Dynamics Laboratory), Department of Mathematics, Computer Science and Physics, University of Udine.

In this paper we study the pseudospectral approximation of delay differential equations formulated as abstract differential equations in the $ \odot* $-space. This formalism also allows us to define rigorously the abstract variation-of-constants formula, where the $ \odot* $-shift operator plays a fundamental role. By applying the pseudospectral discretization technique we derive a system of ordinary differential equations, whose dynamics can be efficiently analyzed by existing bifurcation tools. To better understand to what extent the resulting finite-dimensional system "mimics" the dynamics of the original infinite-dimensional one, we study the pseudospectral approximations of the $ \odot* $-shift operator and of the $ \odot* $-generator in the supremum norm, which is the natural choice for delay differential equations, when the discretization parameter increases. In this context there are still open questions. We collect the most relevant results from the literature and we present some conjectures, supported by various numerical experiments, to illustrate the behavior w.r.t. the discretization parameter and to indicate the direction of ongoing and future research.

Citation: Odo Diekmann, Francesca Scarabel, Rossana Vermiglio. Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020196
References:
[1]

A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), 970-989.  doi: 10.1137/09074721X.  Google Scholar

[2]

A. Andò, D. Breda, L. Davide, S. Maset, F. Scarabel and R. Vermiglio, 15 years or so of pseudospectral collocation methods for stability and bifurcation of delay equations, in Advances on Delays and Dynamics, Springer, New York, 2019. Google Scholar

[3] C. T. H. Baker, The Numerical Treatment of Integral Equations, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1977.   Google Scholar
[4]

C. Baker, Numerical analysis of Volterra functional and integral equations, in The State of the Art in Numerical Analysis, Math. Appl. Conf. Ser. New Ser., 63, Oxford Univ. Press, New York, 1997.  Google Scholar

[5]

H. T. Banks, J. A. Burns and E. M. Cliff, Spline-based approximation methods for control and identification of hereditary systems, in International Symposium on Systems Optimization and Analysis, Lecture Notes in Control and Information Sci., 14, Springer, Berlin-New York, 1979, 314–320. doi: 10.1007/BFb0002662.  Google Scholar

[6]

A. Batkai and S. Piazzera, Semigroup for Delay Equations, Research Notes in Mathematics, 10, A K Peters, Ltd., Wellesley, MA, 2005.  Google Scholar

[7] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003.   Google Scholar
[8]

D. BredaO. DiekmannM. GyllenbergF. Scarabel and R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15 (2016), 1-23.  doi: 10.1137/15M1040931.  Google Scholar

[9]

D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 2016, 1–24. doi: 10.14232/ejqtde.2016.1.65.  Google Scholar

[10]

D. Breda, P. Getto, J. Sánchez Sanz and R. Vermiglio, Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37 (2015), A2607–A2629. doi: 10.1137/15M1016710.  Google Scholar

[11]

D. BredaS. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.  doi: 10.1137/030601600.  Google Scholar

[12]

D. BredaS. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions, Appl. Numer. Math., 56 (2006), 318-331.  doi: 10.1016/j.apnum.2005.04.011.  Google Scholar

[13]

D. BredaS. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50 (2012), 1456-1483.  doi: 10.1137/100815505.  Google Scholar

[14]

D. Breda, S. Maset and R. Vermiglio, Stability of Linear Delay Differential Equations. A Numerical Approach with MATLAB, SpringerBriefs in Electrical and Computer Engineering, Springer, New York, 2015. doi: 10.1007/978-1-4939-2107-2.  Google Scholar

[15] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monographs on Applied and Computational Mathematics, 15, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511543234.  Google Scholar
[16] H. Brunner, Volterra Integral Equations. An Introduction to Theory and Applications, Cambridge Monographs on Applied and Computational Mathematics, 30, Cambridge University Press, Cambridge, 2017.  doi: 10.1017/9781316162491.  Google Scholar
[17]

H. Brunner and P. van der Houwen, The Numerical Solution of Volterra Equations, CWI Monographs, 3, North-Holland Publishing Co., Amsterdam, 1986.  Google Scholar

[18]

C. Canuto, Y. M. Hussaini, A. Quarteroni and T. A. J. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-3-642-84108-8.  Google Scholar

[19]

M. D. ChekrounM. GhilH. Liu and S. Wang, Low-dimensional Galerkin approximations of nonlinear delay differential equations, Discrete Contin. Dyn. Syst., 36 (2016), 4133-4177.  doi: 10.3934/dcds.2016.36.4133.  Google Scholar

[20]

P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. Thieme, Perturbation theory for dual semigroups. Ⅲ: Nonlinear Lipschitz continuous perturbations in the sun-reflexive case, in Volterra Integrodifferential Equations in Banach Spaces and Applications, Pitman Res. Notes Math. Ser., 190, Longman Sci. Tech., Harlow, 1989, 67–89.  Google Scholar

[21]

P. J. Davis, Interpolation and Approximation, Dover Publications, Inc. New York, 1975.  Google Scholar

[22]

A. DhoogeW. GovaertsY. A. KuznetsovH. G. E. Meijer and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147-175.  doi: 10.1080/13873950701742754.  Google Scholar

[23]

O. DiekmannP. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007/08), 1023-1069.  doi: 10.1137/060659211.  Google Scholar

[24]

O. Diekmann and M. Gyllenberg, Equations with infinite delay: Blending the abstract and the concrete, J. Differential Equations, 252 (2012), 819-851.  doi: 10.1016/j.jde.2011.09.038.  Google Scholar

[25]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[26]

M. Dubiner, Asymptotic analysis of spectral methods, J. Sci. Comput., 2 (1987), 3-31.  doi: 10.1007/BF01061510.  Google Scholar

[27]

K. Engelborghs, T. Luzyanina, G. Samaey, D. Roose and K. Verheyden, DDE-BIFTOOL: A MATLAB package for bifurcation analysis of delay differential equations., Available from: http://ddebiftool.sourceforge.net. Google Scholar

[28] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511626357.  Google Scholar
[29]

D. Funaro, A preconditioning matrix for the Chebyshev differencing operator, SIAM J. Numer. Anal., 24 (1987), 1024-1031.  doi: 10.1137/0724067.  Google Scholar

[30]

D. Funaro, Some results about the spectrum of the Chebyshev differencing operator, in Numerical Approximation of Partial Differential Equations, North-Holland Math. Stud., 133, North-Holland, Amsterdam, 1987, 271–284. doi: 10.1016/S0304-0208(08)71738-9.  Google Scholar

[31]

D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series M: Monographs, 8, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-540-46783-0.  Google Scholar

[32]

P. GettoM. GyllenbergY. Nakata and F. Scarabel, Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods, J. Math. Biol., 79 (2019), 281-328.  doi: 10.1007/s00285-019-01357-0.  Google Scholar

[33]

D. Gottlieb, The stability of pseudospectral-Chebyshev methods, Math. Comp., 36 (1981), 107-118.  doi: 10.1090/S0025-5718-1981-0595045-1.  Google Scholar

[34]

D. Gottlieb and L. Lustman, The spectrum of the Chebyshev collocation operator for the heat equation, SIAM J. Numer. Anal., 20 (1983), 909-921.  doi: 10.1137/0720063.  Google Scholar

[35]

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1977. doi: 10.1137/1.9781611970425.  Google Scholar

[36]

D. Gottlieb and E. Turkel, Topics in spectral methods, in Numerical Methods in Fluid Dynamics, Lecture Notes in Math., 1127, Springer, Berlin, 1985, 115–155. doi: 10.1007/BFb0074530.  Google Scholar

[37]

M. GyllenbergF. Scarabel and R. Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333 (2018), 490-505.  doi: 10.1016/j.amc.2018.03.104.  Google Scholar

[38]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems, Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-540-78862-1.  Google Scholar

[39]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[40] J. S. HesthavenS. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, 21, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511618352.  Google Scholar
[41]

N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), 1179-1193.  doi: 10.1137/04061101X.  Google Scholar

[42]

N. J. Higham and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010), 159-208.  doi: 10.1017/S0962492910000036.  Google Scholar

[43]

K. Ito and F. Kappel, A uniformly differentiable approximation scheme for delay systems using splines, Appl. Math. Optim., 23 (1991), 217-262.  doi: 10.1007/BF01442400.  Google Scholar

[44]

K. Ito and F. Kappel, Two families of approximation schemes for delay systems, Results Math., 21 (1992), 93-137.  doi: 10.1007/BF03323074.  Google Scholar

[45]

Z. Jackiewicz and B. D. Welfert, Stability of Gauss-Radau pseudospectral approximations of the one-dimensional wave equation, J. Sci. Comput., 18 (2003), 287-313.  doi: 10.1023/A:1021121008091.  Google Scholar

[46]

R. Kress, Linear Integral Equations, Applied Mathematical Sciences, 82, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-97146-4.  Google Scholar

[47]

D. Liessi, Pseudospectral Methods for Stability of Periodic Solutions of Delay Models, Ph.D thesis, University of Udine, 2018. Google Scholar

[48]

S. Maset, The collocation method in the numerical solution of boundary value problems for neutral functional differential equations. Part Ⅰ: Convergence results, SIAM J. Numer. Anal., 53 (2015), 2771-2793.  doi: 10.1137/130935550.  Google Scholar

[49]

S. Maset, The collocation method in the numerical solution of boundary value problems for neutral functional differential equations. Part Ⅱ: Differential equations with deviating arguments, SIAM J. Numer. Anal., 53 (2015), 2794-2821.  doi: 10.1137/140979022.  Google Scholar

[50]

S. Maset, An abstract framework in the numerical solution of boundary value problems for neutral functional differential equations, Numer. Math., 133 (2016), 525-555.  doi: 10.1007/s00211-015-0754-1.  Google Scholar

[51]

G. Mastroianni and G. V. Milovanović, Interpolation Processes. Basic Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-68349-0.  Google Scholar

[52]

W. MichielsI. Boussaada and S.-I. Niculescu, An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem, SIAM J. Matrix Anal. Appl., 38 (2017), 599-620.  doi: 10.1137/16M107774X.  Google Scholar

[53]

W. Michiels and S.-I. Niculescu, Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue-Based Approach, Advances in Design and Control, 27, SIAM, Philadelphia, PA, 2014. doi: 10.1137/1.9781611973631.  Google Scholar

[54]

S. C. Reddy and L. N. Trefethen, Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comput. Methods Appl. Mech. Engrg., 80 (1990), 147-164.  doi: 10.1016/0045-7825(90)90019-I.  Google Scholar

[55]

T.-J. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, Pure and Applied Mathematics, 10, John Wiley & Sons, Inc., New York, 1990.  Google Scholar

[56]

F. Scarabel, Capture the Past to Portray the Future: Numerical Bifurcation Analysis of Delay Equations, with a Focus on Population Dynamics, Ph.D thesis, University of Helsinki, 2018. Google Scholar

[57]

D. M. Sloan, On the norms of inverses of pseudospectral differentiation matrices, SIAM J. Numer. Anal., 42 (2004), 30-48.  doi: 10.1137/S0036142902414542.  Google Scholar

[58]

A. Solomonoff and E. Turkel, Global properties of pseudospectral methods, J. Comput. Phys., 81 (1989), 239-276.  doi: 10.1016/0021-9991(89)90208-8.  Google Scholar

[59]

R. Szalai, Knut., Available from: http://rs1909.github.io/knut/. Google Scholar

[60]

L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA, 2013.  Google Scholar

[61]

L. N. Trefethen, Inverse yogiisms, Notices Amer. Math. Soc., 63 (2016), 1281-1285.  doi: 10.1090/noti1446.  Google Scholar

[62] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices And Operators, Princeton University Press, Princeton, NJ, 2005.   Google Scholar
[63]

L. N. Trefethen and M. R. Trummer, An instability phenomenon in spectral methods, SIAM J. Numer. Anal., 24 (1987), 1008-1023.  doi: 10.1137/0724066.  Google Scholar

[64]

J. Wang and F. Waleffe, The asymptotic eigenvalues of first-order spectral differentiation matrices, J. Appl. Math. Phys., 2 (2014), 176-188.  doi: 10.4236/jamp.2014.25022.  Google Scholar

[65]

G. Webb, Functional differential equations and nonlinear semigroup in $L_p$-spaces, J. Differential Equations, 20 (1976), 71-89.  doi: 10.1016/0022-0396(76)90097-8.  Google Scholar

[66]

Z. Wu and W. Michiels, Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method, J. Comput. Appl. Math., 236 (2012), 2499-2514.  doi: 10.1016/j.cam.2011.12.009.  Google Scholar

show all references

References:
[1]

A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J. Matrix Anal. Appl., 31 (2009), 970-989.  doi: 10.1137/09074721X.  Google Scholar

[2]

A. Andò, D. Breda, L. Davide, S. Maset, F. Scarabel and R. Vermiglio, 15 years or so of pseudospectral collocation methods for stability and bifurcation of delay equations, in Advances on Delays and Dynamics, Springer, New York, 2019. Google Scholar

[3] C. T. H. Baker, The Numerical Treatment of Integral Equations, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1977.   Google Scholar
[4]

C. Baker, Numerical analysis of Volterra functional and integral equations, in The State of the Art in Numerical Analysis, Math. Appl. Conf. Ser. New Ser., 63, Oxford Univ. Press, New York, 1997.  Google Scholar

[5]

H. T. Banks, J. A. Burns and E. M. Cliff, Spline-based approximation methods for control and identification of hereditary systems, in International Symposium on Systems Optimization and Analysis, Lecture Notes in Control and Information Sci., 14, Springer, Berlin-New York, 1979, 314–320. doi: 10.1007/BFb0002662.  Google Scholar

[6]

A. Batkai and S. Piazzera, Semigroup for Delay Equations, Research Notes in Mathematics, 10, A K Peters, Ltd., Wellesley, MA, 2005.  Google Scholar

[7] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003.   Google Scholar
[8]

D. BredaO. DiekmannM. GyllenbergF. Scarabel and R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15 (2016), 1-23.  doi: 10.1137/15M1040931.  Google Scholar

[9]

D. Breda, O. Diekmann, D. Liessi and F. Scarabel, Numerical bifurcation analysis of a class of nonlinear renewal equations, Electron. J. Qual. Theory Differ. Equ., 2016, 1–24. doi: 10.14232/ejqtde.2016.1.65.  Google Scholar

[10]

D. Breda, P. Getto, J. Sánchez Sanz and R. Vermiglio, Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37 (2015), A2607–A2629. doi: 10.1137/15M1016710.  Google Scholar

[11]

D. BredaS. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.  doi: 10.1137/030601600.  Google Scholar

[12]

D. BredaS. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions, Appl. Numer. Math., 56 (2006), 318-331.  doi: 10.1016/j.apnum.2005.04.011.  Google Scholar

[13]

D. BredaS. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50 (2012), 1456-1483.  doi: 10.1137/100815505.  Google Scholar

[14]

D. Breda, S. Maset and R. Vermiglio, Stability of Linear Delay Differential Equations. A Numerical Approach with MATLAB, SpringerBriefs in Electrical and Computer Engineering, Springer, New York, 2015. doi: 10.1007/978-1-4939-2107-2.  Google Scholar

[15] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge Monographs on Applied and Computational Mathematics, 15, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511543234.  Google Scholar
[16] H. Brunner, Volterra Integral Equations. An Introduction to Theory and Applications, Cambridge Monographs on Applied and Computational Mathematics, 30, Cambridge University Press, Cambridge, 2017.  doi: 10.1017/9781316162491.  Google Scholar
[17]

H. Brunner and P. van der Houwen, The Numerical Solution of Volterra Equations, CWI Monographs, 3, North-Holland Publishing Co., Amsterdam, 1986.  Google Scholar

[18]

C. Canuto, Y. M. Hussaini, A. Quarteroni and T. A. J. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-3-642-84108-8.  Google Scholar

[19]

M. D. ChekrounM. GhilH. Liu and S. Wang, Low-dimensional Galerkin approximations of nonlinear delay differential equations, Discrete Contin. Dyn. Syst., 36 (2016), 4133-4177.  doi: 10.3934/dcds.2016.36.4133.  Google Scholar

[20]

P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. Thieme, Perturbation theory for dual semigroups. Ⅲ: Nonlinear Lipschitz continuous perturbations in the sun-reflexive case, in Volterra Integrodifferential Equations in Banach Spaces and Applications, Pitman Res. Notes Math. Ser., 190, Longman Sci. Tech., Harlow, 1989, 67–89.  Google Scholar

[21]

P. J. Davis, Interpolation and Approximation, Dover Publications, Inc. New York, 1975.  Google Scholar

[22]

A. DhoogeW. GovaertsY. A. KuznetsovH. G. E. Meijer and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147-175.  doi: 10.1080/13873950701742754.  Google Scholar

[23]

O. DiekmannP. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007/08), 1023-1069.  doi: 10.1137/060659211.  Google Scholar

[24]

O. Diekmann and M. Gyllenberg, Equations with infinite delay: Blending the abstract and the concrete, J. Differential Equations, 252 (2012), 819-851.  doi: 10.1016/j.jde.2011.09.038.  Google Scholar

[25]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[26]

M. Dubiner, Asymptotic analysis of spectral methods, J. Sci. Comput., 2 (1987), 3-31.  doi: 10.1007/BF01061510.  Google Scholar

[27]

K. Engelborghs, T. Luzyanina, G. Samaey, D. Roose and K. Verheyden, DDE-BIFTOOL: A MATLAB package for bifurcation analysis of delay differential equations., Available from: http://ddebiftool.sourceforge.net. Google Scholar

[28] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, 1, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511626357.  Google Scholar
[29]

D. Funaro, A preconditioning matrix for the Chebyshev differencing operator, SIAM J. Numer. Anal., 24 (1987), 1024-1031.  doi: 10.1137/0724067.  Google Scholar

[30]

D. Funaro, Some results about the spectrum of the Chebyshev differencing operator, in Numerical Approximation of Partial Differential Equations, North-Holland Math. Stud., 133, North-Holland, Amsterdam, 1987, 271–284. doi: 10.1016/S0304-0208(08)71738-9.  Google Scholar

[31]

D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series M: Monographs, 8, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-540-46783-0.  Google Scholar

[32]

P. GettoM. GyllenbergY. Nakata and F. Scarabel, Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods, J. Math. Biol., 79 (2019), 281-328.  doi: 10.1007/s00285-019-01357-0.  Google Scholar

[33]

D. Gottlieb, The stability of pseudospectral-Chebyshev methods, Math. Comp., 36 (1981), 107-118.  doi: 10.1090/S0025-5718-1981-0595045-1.  Google Scholar

[34]

D. Gottlieb and L. Lustman, The spectrum of the Chebyshev collocation operator for the heat equation, SIAM J. Numer. Anal., 20 (1983), 909-921.  doi: 10.1137/0720063.  Google Scholar

[35]

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1977. doi: 10.1137/1.9781611970425.  Google Scholar

[36]

D. Gottlieb and E. Turkel, Topics in spectral methods, in Numerical Methods in Fluid Dynamics, Lecture Notes in Math., 1127, Springer, Berlin, 1985, 115–155. doi: 10.1007/BFb0074530.  Google Scholar

[37]

M. GyllenbergF. Scarabel and R. Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333 (2018), 490-505.  doi: 10.1016/j.amc.2018.03.104.  Google Scholar

[38]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems, Springer Series in Computational Mathematics, 8, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-540-78862-1.  Google Scholar

[39]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[40] J. S. HesthavenS. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, 21, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9780511618352.  Google Scholar
[41]

N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), 1179-1193.  doi: 10.1137/04061101X.  Google Scholar

[42]

N. J. Higham and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010), 159-208.  doi: 10.1017/S0962492910000036.  Google Scholar

[43]

K. Ito and F. Kappel, A uniformly differentiable approximation scheme for delay systems using splines, Appl. Math. Optim., 23 (1991), 217-262.  doi: 10.1007/BF01442400.  Google Scholar

[44]

K. Ito and F. Kappel, Two families of approximation schemes for delay systems, Results Math., 21 (1992), 93-137.  doi: 10.1007/BF03323074.  Google Scholar

[45]

Z. Jackiewicz and B. D. Welfert, Stability of Gauss-Radau pseudospectral approximations of the one-dimensional wave equation, J. Sci. Comput., 18 (2003), 287-313.  doi: 10.1023/A:1021121008091.  Google Scholar

[46]

R. Kress, Linear Integral Equations, Applied Mathematical Sciences, 82, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-97146-4.  Google Scholar

[47]

D. Liessi, Pseudospectral Methods for Stability of Periodic Solutions of Delay Models, Ph.D thesis, University of Udine, 2018. Google Scholar

[48]

S. Maset, The collocation method in the numerical solution of boundary value problems for neutral functional differential equations. Part Ⅰ: Convergence results, SIAM J. Numer. Anal., 53 (2015), 2771-2793.  doi: 10.1137/130935550.  Google Scholar

[49]

S. Maset, The collocation method in the numerical solution of boundary value problems for neutral functional differential equations. Part Ⅱ: Differential equations with deviating arguments, SIAM J. Numer. Anal., 53 (2015), 2794-2821.  doi: 10.1137/140979022.  Google Scholar

[50]

S. Maset, An abstract framework in the numerical solution of boundary value problems for neutral functional differential equations, Numer. Math., 133 (2016), 525-555.  doi: 10.1007/s00211-015-0754-1.  Google Scholar

[51]

G. Mastroianni and G. V. Milovanović, Interpolation Processes. Basic Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-68349-0.  Google Scholar

[52]

W. MichielsI. Boussaada and S.-I. Niculescu, An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem, SIAM J. Matrix Anal. Appl., 38 (2017), 599-620.  doi: 10.1137/16M107774X.  Google Scholar

[53]

W. Michiels and S.-I. Niculescu, Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue-Based Approach, Advances in Design and Control, 27, SIAM, Philadelphia, PA, 2014. doi: 10.1137/1.9781611973631.  Google Scholar

[54]

S. C. Reddy and L. N. Trefethen, Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comput. Methods Appl. Mech. Engrg., 80 (1990), 147-164.  doi: 10.1016/0045-7825(90)90019-I.  Google Scholar

[55]

T.-J. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, Pure and Applied Mathematics, 10, John Wiley & Sons, Inc., New York, 1990.  Google Scholar

[56]

F. Scarabel, Capture the Past to Portray the Future: Numerical Bifurcation Analysis of Delay Equations, with a Focus on Population Dynamics, Ph.D thesis, University of Helsinki, 2018. Google Scholar

[57]

D. M. Sloan, On the norms of inverses of pseudospectral differentiation matrices, SIAM J. Numer. Anal., 42 (2004), 30-48.  doi: 10.1137/S0036142902414542.  Google Scholar

[58]

A. Solomonoff and E. Turkel, Global properties of pseudospectral methods, J. Comput. Phys., 81 (1989), 239-276.  doi: 10.1016/0021-9991(89)90208-8.  Google Scholar

[59]

R. Szalai, Knut., Available from: http://rs1909.github.io/knut/. Google Scholar

[60]

L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia, PA, 2013.  Google Scholar

[61]

L. N. Trefethen, Inverse yogiisms, Notices Amer. Math. Soc., 63 (2016), 1281-1285.  doi: 10.1090/noti1446.  Google Scholar

[62] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices And Operators, Princeton University Press, Princeton, NJ, 2005.   Google Scholar
[63]

L. N. Trefethen and M. R. Trummer, An instability phenomenon in spectral methods, SIAM J. Numer. Anal., 24 (1987), 1008-1023.  doi: 10.1137/0724066.  Google Scholar

[64]

J. Wang and F. Waleffe, The asymptotic eigenvalues of first-order spectral differentiation matrices, J. Appl. Math. Phys., 2 (2014), 176-188.  doi: 10.4236/jamp.2014.25022.  Google Scholar

[65]

G. Webb, Functional differential equations and nonlinear semigroup in $L_p$-spaces, J. Differential Equations, 20 (1976), 71-89.  doi: 10.1016/0022-0396(76)90097-8.  Google Scholar

[66]

Z. Wu and W. Michiels, Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method, J. Comput. Appl. Math., 236 (2012), 2499-2514.  doi: 10.1016/j.cam.2011.12.009.  Google Scholar

Figure 1.  Left: plot of $ \sigma(D_M) $ for different $ M $, together with the line $ \mathrm{Re} \lambda = \log \epsilon \approx -36.0437 $ connected with the instability phenomenon studied in [63]. Right: plot of $ \frac{-\alpha(D_M)}{\log(M)} $, versus $ M $
Figure 2.  Error $ \| \psi_M - \psi\| $ for the resolvent operators applied to $ \beta = 0 $, $ \varphi = 1 $, versus $ M $. Left: $ \lambda = 1 $; right: $ \lambda = 10 $. Note the spectral accuracy and that the convergence is slower when $ \lambda $ has larger modulus
Figure 3.  Left: plot of $ \log \|{\rm e}^{D_M t}\| $ for $ t\in [0, 2] $ with different values of $ M $. Notice divergence in $ [0, 1] $ for increasing $ M $. Right: plot of $ \max_{t\in I} \frac{\log \|{\rm e}^{D_M t}\|}{\log(M)} $ versus $ M, $ for $ I $ specified in the legend. Notice that the convergence gains one order at every time interval
Figure 4.  $ \|{\rm e}^{D_M t}\| $ computed with different routines: built-in Matlab function $text{expm}$ and $\text{norm(., inf)}$ versus maximum over $ n = 100 $ random initial vectors of the solution of the ODE system. Left: $ \|{\rm e}^{D_M t}\| $ versus time. Right: $ \max_{t \in [0, 2]} \|{\rm e}^{D_M t}\| $ versus $ M $. The dotted line is the reference line $ \log(M) $. The fact that the effective norm of the exponential matrix diverges, while the norm computed by selecting a random set of vectors is uniformly bounded, suggests that the "bad" behavior of the norm is due to a small set of vectors
Figure 5.  Left: plot of the function $ \sum\limits_{i = 1}^M |\ell_i(\theta)| $ for $ M = 8 $. Right: plot of $ \|{\rm e}^{D_M t}\| $ (blue) and $ C_M(t) $ in (45) (red) versus time for $ M = 8 $
Figure 6.  Left: plot of $ \psi(\theta) = H(\theta) $ (black) and its interpolating polynomial for $ M = 8 $ (red). Right: $ \log \log $ plot of the error $ \|{\rm e}^{D_M t}\psi(\Theta_M)-R_M \mathcal{H}_{0}(t)\psi\| $ for $ t = 0.5, 1.5, 2.5 $ versus $ M $. Note the uniform bound for $ t = 0.5 $ and the convergence for $ t>1 $. The dotted lines are the reference lines $ M^{-k} $, $ k = 1, \dots, 4 $
Figure 7.  Same as Figure 6 for $ \psi(\theta) = 0.5-|\theta+0.5| $. Note that $ \psi \in Y $ and $ \psi^{(1)} $ has bounded variation. The convergence rate for $ t = 0.25, 0.5 $ is $ O(M^{-1}) $ (right)
Figure 8.  Same as Figure 6 for $ \psi(\theta) = {\rm e}^{\theta^2}-1 $. Note that the interpolating polynomial is indistinguishable from the function (left) and that $ \psi^{(2)} $ has bounded variation. The convergence rate for $ t = 0.5 $ is $ O(M^{-2}) $ (right)
Figure 9.  Same as Figure 6 for $ \psi(\theta) = -\theta^3. $ Note that the interpolating polynomial is indistinguishable from the function (left) and that $ \psi^{(3)} $ has bounded variation. The convergence rate for $ t = 0.5 $ is $ O(M^{-3}) $ (right)
Figure 10.  Same as Figure 6 for $ \psi(\theta) = {\rm e}^{-1/\theta^2}. $ Note that the interpolating polynomial is indistinguishable from the function (left) and the spectral convergence for $ t = 0.5, 1.5, 2.5 $ (right)
Figure 11.  Same as Figure 6 for $ \psi(\theta) = \sin\frac{1}{\theta} $, if $ \theta<0 $, $ \psi(0) = 0 $. Note there is no convergence for $ t = 0.5 $
Figure 12.  Same as Figure 6 for $ \psi(\theta) = \sin(6 \theta)+sign(\sin(\theta+{\rm e}^{2\theta})) $ [60,pag.10]. Note there is no convergence for $ t = 0.5 $
Figure 13.  Left: plot of the function $ z $ (saw function) Right: error $ \|\int_0^t e^{(t-s)D_M} z(s) {\rm d} s- w(t)(\Theta_M) \| $ for $ t = 0.5, 1, 1.5 $ versus $ M $. The dotted line is the reference line $ \log(M)/M $
Figure 14.  Same as Figures 13 for the function $ z $ built so that it is continuously differentiable with jumps in the second derivative at $ t = 0.5,1,1.5 $
Table 1.  $ \|D_M\| $ and estimation of the order $ \log_2\frac{\|D_{2M}\|}{\|D_M\|} $ varying $ M. $
$ M $ $ \|D_M\| $ order $ \|D_M\|/M^2 $
4 31 1.9375
8 127 2.0345 1.9844
16 511 2.0085 1.9961
32 2047 2.0021 1.9990
64 8191 2.0005 1.9998
128 32767 2.0001 1.9999
256 131071 2.0000 2.0000
$ M $ $ \|D_M\| $ order $ \|D_M\|/M^2 $
4 31 1.9375
8 127 2.0345 1.9844
16 511 2.0085 1.9961
32 2047 2.0021 1.9990
64 8191 2.0005 1.9998
128 32767 2.0001 1.9999
256 131071 2.0000 2.0000
Table 2.  $ \mu(D_M) $ and estimation of the order $ \log_2\frac{\mu(D_{2M})}{\mu(D_M)} $ varying $ M. $
$ M $ $ \mu(D_M) $ order $ \mu(D_M)/M^2 $
4 6.6569e+00 4.1605e-01
8 3.8921e+01 2.5476 6.0814e-01
16 1.6698e+02 2.1011 6.5227e-01
32 6.7900e+02 2.0237 6.6308e-01
64 2.7270e+03 2.0058 6.6577e-01
128 1.0919e+04 2.0015 6.6644e-01
256 4.3687e+04 2.0004 6.6661e-01
$ M $ $ \mu(D_M) $ order $ \mu(D_M)/M^2 $
4 6.6569e+00 4.1605e-01
8 3.8921e+01 2.5476 6.0814e-01
16 1.6698e+02 2.1011 6.5227e-01
32 6.7900e+02 2.0237 6.6308e-01
64 2.7270e+03 2.0058 6.6577e-01
128 1.0919e+04 2.0015 6.6644e-01
256 4.3687e+04 2.0004 6.6661e-01
[1]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[2]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[3]

Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275

[4]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[5]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[6]

Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839

[7]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[8]

Angelamaria Cardone, Dajana Conte, Beatrice Paternoster. Two-step collocation methods for fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2709-2725. doi: 10.3934/dcdsb.2018088

[9]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[10]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[11]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[12]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[13]

Hamid Reza Marzban, Hamid Reza Tabrizidooz. Solution of nonlinear delay optimal control problems using a composite pseudospectral collocation method. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1379-1389. doi: 10.3934/cpaa.2010.9.1379

[14]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[15]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[16]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[17]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[18]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[19]

Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, Victor Tkachenko. Wright type delay differential equations with negative Schwarzian. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 309-321. doi: 10.3934/dcds.2003.9.309

[20]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]