doi: 10.3934/dcdss.2020205

Modeling and control algorithm design for power-assisted steering stability of electric vehicle

1. 

Automotive Engineering Department, Xingtai Polytechnic College, Xingtai 054035, China

2. 

Department of Business Administration, University of Science and Technology, Anshan 114051, China

* Corresponding author: Dayong Xu

Received  March 2019 Revised  April 2019 Published  December 2019

In the traditional power-assisted steering stability modeling and control algorithm based on PID, power control is achieved based on the filtering results of PID control signal, it lacks of road control process in the process of assisted control, with poor real-time control and low stability. In this paper, a new power-assisted steering stability modeling and control algorithm of electric vehicle is designed. Firstly, a power-assisted steering stability model of electric vehicle is constructed, to analyze the basic structure and working principle of the electric power steering (EPS) system, then a mathematical model of the EPS system is constructed. On this basis, the Simulink tool is used to establish simulation models for each subsystem of EPS. In the process of designing the control algorithm, the P algorithm and the PD algorithm are used to control the power, and the road model of the two algorithms is constructed. The steering gear ratio, the electromagnetic torque coefficient and the boosting current gain coefficient in the road model are adjusted to realize the electric vehicle assisted control. It is proved by experiments that the angle pulse input and the lateral accelerations of steady-state rotation of the electric vehicle under the control of the designed algorithm are $ -0.4 $ g to $ -0.3 $ g and $ -0.33 $ g to $ -0.72 $ g, and the yaw rate is $ -3 $ deg/sec to 17.5 deg/sec and 22 deg/sec to 34 deg/sec, respectively, indicating that the electric vehicle has a high dynamic response and stability under the control of the designed algorithm.

Citation: Xinwen Luo, Weize Liu, Zhiyi Huo, Dayong Xu. Modeling and control algorithm design for power-assisted steering stability of electric vehicle. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020205
References:
[1]

Y. AhmadU. AliM. BilalS. Zafar and Z. Zahid, Some new standard graphs labeled by 3-total edge product cordial labeling, Applied Mathematics and Nonlinear Sciences, 2 (2017), 61-72.  doi: 10.21042/AMNS.2017.1.00005.  Google Scholar

[2]

H. AouzellagK. Ghedamsi and D. Aouzellag, Energy management and fault tolerant control strategies for fuel cell/ultra-capacitor hybrid electric vehicles to enhance autonomy, efficiency and life time of the fuel cell system, International Journal of Hydrogen Energy, 40 (2015), 7204-7213.  doi: 10.1016/j.ijhydene.2015.03.132.  Google Scholar

[3]

Y. L. CaoZ. Cao and L. Y. Xu, Research on the stability control simulation of electric vehicle steering motor based on road, Computer Simulation, 34 (2017), 132-136.   Google Scholar

[4]

J. L. F. DayaP. Sanjeevikumar and F. Blaabjerg, Implementation of wavelet-based robust differential control for electric vehicle application, IEEE Transactions on Power Electronics, 30 (2015), 6510-6513.  doi: 10.1109/TPEL.2015.2440297.  Google Scholar

[5]

X. DuK. K. K. Htet and K. K. Tan, Development of genetic-algorithm-based nonlinear model predictive control scheme on velocity and steering of autonomous driving vehicles, IEEE Transactions on Industrial Electronics, 63 (2016), 1-1.   Google Scholar

[6]

H. Fu and X. Liu, Research on the phenomenon of chinese residents spiritual contagion for the reuse of recycled water based on sc-iat, Water, 9 (2017), 846. Google Scholar

[7]

W. Gao and W. Wang, New isolated toughness condition for fractional (g, f, n) - critical graph, Colloquium Mathematicum, 147 (2017), 55-65.  doi: 10.4064/cm6713-8-2016.  Google Scholar

[8]

Y. GaoY. Shen and T. Xu, Oscillatory yaw motion control for hydraulic power steering articulated vehicles considering the influence of varying bulk modulus, IEEE Transactions on Control Systems Technology, 27 (2019), 1284-1292.  doi: 10.1109/TCST.2018.2803746.  Google Scholar

[9]

T. GoggiaA. Sorniotti and L. D. Novellis, Integral sliding mode for the torque-vectoring control of fully electric vehicles: Theoretical design and experimental assessment, IEEE Transactions on Vehicular Technology, 64 (2015), 1701-1715.  doi: 10.1109/TVT.2014.2339401.  Google Scholar

[10]

R. A. HanifahS. F. Toha and S. Ahmad, Swarm-intelligence tuned current reduction for power assisted steering control in electric vehicle, IEEE Transactions on Industrial Electronics, 65 (2018), 7202-7210.  doi: 10.1109/TIE.2017.2784344.  Google Scholar

[11]

M. Y. HuangT. ChiF. Wang and e. al., An all-passive negative feedback network for broadband and wide field-of-view self-steering beam-forming with zero dc power consumption, IEEE Journal of Solid-State Circuits, 52 (2017), 1260-1273.  doi: 10.1109/JSSC.2016.2641947.  Google Scholar

[12]

J. Jang, M. L. Jin and S. G. Cho, e. al., Space-time kriging surrogate model to consider uncertainty of time interval of torque curve for electric power steering motor, IEEE Transactions on Magnetics, 54 (2018), 8200804. doi: 10.1109/TMAG.2017.2755459.  Google Scholar

[13]

J. S. KangF. JiangZ. M.Zhong and e. al., Overviews of flux weakening control schemes with permanent magnet synchronous motor used in electric vehicles, Journal of Power Supply, 15 (2017), 15-22.   Google Scholar

[14]

W. KimY. S. Son and C. C. Chung, Torque-overlay-based robust steering wheel angle control of electrical power steering for a lane-keeping system of automated vehicles, IEEE Transactions on Vehicular Technology, 65 (2016), 4379-4392.  doi: 10.1109/TVT.2015.2473115.  Google Scholar

[15]

D. LeeK. S. Kim and S. Kim, Controller design of an electric power steering system, IEEE Transactions on Control Systems Technology, 26 (2018), 748-755.  doi: 10.1109/TCST.2017.2679062.  Google Scholar

[16]

L. L. Liao and H. B. Li, Application of interpolation algorithm in vehicle volume detection in oil tank, Automation and Instrumentation, (2015), 95–95. Google Scholar

[17]

C. MiJ. WangW. MiY. HuangZ. ZhangY. YangJ. Jiang and P. Octavian, An aimms-based decision-making model for optimizing the intelligent stowage of export containers in a single bay, Discrete and Continuous Dynamical Systems Series S, 12 (2019), 1101-1115.   Google Scholar

[18]

V. V. RostovI. V. Romanchenko and A. V. Gunin, Review of experiments on microwave beam steering in arrays of high-power oscillators by the control of voltage rise time, IEEE Transactions on Plasma Science, 46 (2018), 3640-3647.  doi: 10.1109/TPS.2018.2810824.  Google Scholar

[19]

B. SunT. Dragivȩvić and F. D. Freijedo, A control algorithm for electric vehicle fast charging stations equipped with flywheel energy storage systems, IEEE Transactions on Power Electronics, 31 (2016), 6674-6685.  doi: 10.1109/TPEL.2015.2500962.  Google Scholar

[20]

Y. B. WangH. X. Yang and L. Geng, Research on the surface quality stability of ultra thin germanium polished wafers, Journal of China Academy of Electronics and Information Technology, 11 (2016), 527-531.   Google Scholar

[21]

F. WilhelmT. Tamura and R. Fuchs, Friction compensation control for power steering, IEEE Transactions on Control Systems Technology, 24 (2016), 1354-1367.  doi: 10.1109/TCST.2015.2483561.  Google Scholar

[22]

T. Yang, A new control framework of electric power steering system based on admittance control, IEEE Transactions on Control Systems Technology, 23 (2015), 762-769.   Google Scholar

[23]

D. YuH. Liu and C. Bresser, Peak load management based on hybrid power generation and demand response, Energy, 163 (2018), 969-985.  doi: 10.1016/j.energy.2018.08.177.  Google Scholar

[24]

Z. ZhangX. Zhang and H. Pan, A novel steering system for a space-saving 4ws4wd electric vehicle: Design, modeling, and road tests, IEEE Transactions on Intelligent Transportation Systems, 18 (2017), 114-127.  doi: 10.1109/TITS.2016.2561626.  Google Scholar

[25]

Z. ZhaoL. Zhou and e. a. Luo Y., Emergency steering evasion assistance control based on driving behavior analysis, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 457-475.  doi: 10.1109/TITS.2018.2814687.  Google Scholar

show all references

References:
[1]

Y. AhmadU. AliM. BilalS. Zafar and Z. Zahid, Some new standard graphs labeled by 3-total edge product cordial labeling, Applied Mathematics and Nonlinear Sciences, 2 (2017), 61-72.  doi: 10.21042/AMNS.2017.1.00005.  Google Scholar

[2]

H. AouzellagK. Ghedamsi and D. Aouzellag, Energy management and fault tolerant control strategies for fuel cell/ultra-capacitor hybrid electric vehicles to enhance autonomy, efficiency and life time of the fuel cell system, International Journal of Hydrogen Energy, 40 (2015), 7204-7213.  doi: 10.1016/j.ijhydene.2015.03.132.  Google Scholar

[3]

Y. L. CaoZ. Cao and L. Y. Xu, Research on the stability control simulation of electric vehicle steering motor based on road, Computer Simulation, 34 (2017), 132-136.   Google Scholar

[4]

J. L. F. DayaP. Sanjeevikumar and F. Blaabjerg, Implementation of wavelet-based robust differential control for electric vehicle application, IEEE Transactions on Power Electronics, 30 (2015), 6510-6513.  doi: 10.1109/TPEL.2015.2440297.  Google Scholar

[5]

X. DuK. K. K. Htet and K. K. Tan, Development of genetic-algorithm-based nonlinear model predictive control scheme on velocity and steering of autonomous driving vehicles, IEEE Transactions on Industrial Electronics, 63 (2016), 1-1.   Google Scholar

[6]

H. Fu and X. Liu, Research on the phenomenon of chinese residents spiritual contagion for the reuse of recycled water based on sc-iat, Water, 9 (2017), 846. Google Scholar

[7]

W. Gao and W. Wang, New isolated toughness condition for fractional (g, f, n) - critical graph, Colloquium Mathematicum, 147 (2017), 55-65.  doi: 10.4064/cm6713-8-2016.  Google Scholar

[8]

Y. GaoY. Shen and T. Xu, Oscillatory yaw motion control for hydraulic power steering articulated vehicles considering the influence of varying bulk modulus, IEEE Transactions on Control Systems Technology, 27 (2019), 1284-1292.  doi: 10.1109/TCST.2018.2803746.  Google Scholar

[9]

T. GoggiaA. Sorniotti and L. D. Novellis, Integral sliding mode for the torque-vectoring control of fully electric vehicles: Theoretical design and experimental assessment, IEEE Transactions on Vehicular Technology, 64 (2015), 1701-1715.  doi: 10.1109/TVT.2014.2339401.  Google Scholar

[10]

R. A. HanifahS. F. Toha and S. Ahmad, Swarm-intelligence tuned current reduction for power assisted steering control in electric vehicle, IEEE Transactions on Industrial Electronics, 65 (2018), 7202-7210.  doi: 10.1109/TIE.2017.2784344.  Google Scholar

[11]

M. Y. HuangT. ChiF. Wang and e. al., An all-passive negative feedback network for broadband and wide field-of-view self-steering beam-forming with zero dc power consumption, IEEE Journal of Solid-State Circuits, 52 (2017), 1260-1273.  doi: 10.1109/JSSC.2016.2641947.  Google Scholar

[12]

J. Jang, M. L. Jin and S. G. Cho, e. al., Space-time kriging surrogate model to consider uncertainty of time interval of torque curve for electric power steering motor, IEEE Transactions on Magnetics, 54 (2018), 8200804. doi: 10.1109/TMAG.2017.2755459.  Google Scholar

[13]

J. S. KangF. JiangZ. M.Zhong and e. al., Overviews of flux weakening control schemes with permanent magnet synchronous motor used in electric vehicles, Journal of Power Supply, 15 (2017), 15-22.   Google Scholar

[14]

W. KimY. S. Son and C. C. Chung, Torque-overlay-based robust steering wheel angle control of electrical power steering for a lane-keeping system of automated vehicles, IEEE Transactions on Vehicular Technology, 65 (2016), 4379-4392.  doi: 10.1109/TVT.2015.2473115.  Google Scholar

[15]

D. LeeK. S. Kim and S. Kim, Controller design of an electric power steering system, IEEE Transactions on Control Systems Technology, 26 (2018), 748-755.  doi: 10.1109/TCST.2017.2679062.  Google Scholar

[16]

L. L. Liao and H. B. Li, Application of interpolation algorithm in vehicle volume detection in oil tank, Automation and Instrumentation, (2015), 95–95. Google Scholar

[17]

C. MiJ. WangW. MiY. HuangZ. ZhangY. YangJ. Jiang and P. Octavian, An aimms-based decision-making model for optimizing the intelligent stowage of export containers in a single bay, Discrete and Continuous Dynamical Systems Series S, 12 (2019), 1101-1115.   Google Scholar

[18]

V. V. RostovI. V. Romanchenko and A. V. Gunin, Review of experiments on microwave beam steering in arrays of high-power oscillators by the control of voltage rise time, IEEE Transactions on Plasma Science, 46 (2018), 3640-3647.  doi: 10.1109/TPS.2018.2810824.  Google Scholar

[19]

B. SunT. Dragivȩvić and F. D. Freijedo, A control algorithm for electric vehicle fast charging stations equipped with flywheel energy storage systems, IEEE Transactions on Power Electronics, 31 (2016), 6674-6685.  doi: 10.1109/TPEL.2015.2500962.  Google Scholar

[20]

Y. B. WangH. X. Yang and L. Geng, Research on the surface quality stability of ultra thin germanium polished wafers, Journal of China Academy of Electronics and Information Technology, 11 (2016), 527-531.   Google Scholar

[21]

F. WilhelmT. Tamura and R. Fuchs, Friction compensation control for power steering, IEEE Transactions on Control Systems Technology, 24 (2016), 1354-1367.  doi: 10.1109/TCST.2015.2483561.  Google Scholar

[22]

T. Yang, A new control framework of electric power steering system based on admittance control, IEEE Transactions on Control Systems Technology, 23 (2015), 762-769.   Google Scholar

[23]

D. YuH. Liu and C. Bresser, Peak load management based on hybrid power generation and demand response, Energy, 163 (2018), 969-985.  doi: 10.1016/j.energy.2018.08.177.  Google Scholar

[24]

Z. ZhangX. Zhang and H. Pan, A novel steering system for a space-saving 4ws4wd electric vehicle: Design, modeling, and road tests, IEEE Transactions on Intelligent Transportation Systems, 18 (2017), 114-127.  doi: 10.1109/TITS.2016.2561626.  Google Scholar

[25]

Z. ZhaoL. Zhou and e. a. Luo Y., Emergency steering evasion assistance control based on driving behavior analysis, IEEE Transactions on Intelligent Transportation Systems, 20 (2019), 457-475.  doi: 10.1109/TITS.2018.2814687.  Google Scholar

Figure 1.  Force analysis diagram of EPS system
Figure 2.  General block diagram of ESP system simulation model
Figure 3.  Torque comparison diagram of steering wheel input
Figure 4.  Comparison of lateral acceleration of corner pulse input
Figure 5.  Comparison of angular pulse input yaw rate
Figure 6.  Torque comparison diagram of step input steering wheel
Figure 7.  Comparative diagram of lateral acceleration of corner step input
Figure 8.  Comparison of the yaw rate of step input
Figure 9.  Contrast diagram of lateral acceleration at low speed steering
Figure 10.  Comparison of yaw rate for low speed steering return
Figure 11.  Lateral acceleration contrast diagram of high speed steering alignment
Figure 12.  Comparison of yaw rate for high speed steering return
Figure 13.  Contrast diagram of lateral acceleration for steady rotation
Figure 14.  Comparative diagram of yaw rate for steady rotation
[1]

Jianhua Zhang. Traffic signal fuzzy control algorithm for urban intersection based on vehicle-road cooperative environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020251

[2]

Wen-Li Li, Jing-Jing Wang, Xiang-Kui Zhang, Peng Yi. A novel road dynamic simulation approach for vehicle driveline experiments. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1035-1052. doi: 10.3934/dcdss.2019071

[3]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[4]

Kang-Yu Ni, Shankar Rao, Yuri Owechko. Foveated compressive imaging for low power vehicle fingerprinting and tracking in aerial imagery. Inverse Problems & Imaging, 2017, 11 (1) : 177-202. doi: 10.3934/ipi.2017009

[5]

Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multi-interference. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020104

[6]

Reetabrata Mookherjee, Benjamin F. Hobbs, Terry L. Friesz, Matthew A. Rigdon. Dynamic oligopolistic competition on an electric power network with ramping costs and joint sales constraints. Journal of Industrial & Management Optimization, 2008, 4 (3) : 425-452. doi: 10.3934/jimo.2008.4.425

[7]

Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045

[8]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control & Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[9]

Hongshan Ren. Stability analysis of a simplified model for the control of testosterone secretion. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 729-738. doi: 10.3934/dcdsb.2004.4.729

[10]

Mingyong Lai, Hongming Yang, Songping Yang, Junhua Zhao, Yan Xu. Cyber-physical logistics system-based vehicle routing optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 701-715. doi: 10.3934/jimo.2014.10.701

[11]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[12]

Olha P. Kupenko, Rosanna Manzo. Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2967-2992. doi: 10.3934/dcdsb.2015.20.2967

[13]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[14]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[15]

Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153

[16]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[17]

Jin Soo Park, Kyung Jae Kim, Yun Han Bae, Bong Dae Choi. Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 627-638. doi: 10.3934/naco.2011.1.627

[18]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[19]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[20]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks & Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]