doi: 10.3934/dcdss.2020212

Lyapunov type inequality in the frame of generalized Caputo derivatives

1. 

Department of Mathematics, Çankaya University 06790, Ankara, Turkey

2. 

Department of Mathematics, Faculty of Sciences, University of M'hamed Bougara, UMBB, Boumerdes, 35000, Algeria

3. 

Department of Mathematics and General Sciences, Prince Sultan University, P. O. Box 66833, 11586 Riyadh, Saudi Arabia

4. 

Department of Medical Research, China Medical University, 40402, Taichung, Taiwan

5. 

Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

6. 

Department of Applied mathematics, Palestine Technical University-Kadoorie, Tulkarm, West Bank, Palestine

7. 

College of Engineering, Al Ain University of Science and Technology, Al Ain, UAE

8. 

College of Science, Tafila Technical University, Tafila, Jordan

* Corresponding author

Received  April 2019 Revised  May 2019 Published  December 2019

Fund Project: The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

In this paper, we establish the Lyapunov-type inequality for boundary value problems involving generalized Caputo fractional derivatives that unite the Caputo and Caputo-Hadamrad fractional derivatives. An application about the zeros of generalized types of Mittag-Leffler functions is given.

Citation: Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020212
References:
[1]

T. Abdeljawad, B. Benli and D. Baleanu, A generalized q-Mittag-Leffler function by q-Captuo fractional linear equations, Abstract and Appl. Anal., 2012 (2012), Article ID 546062, 11pp. doi: 10.1155/2012/546062.  Google Scholar

[2]

T. AbdeljawadF. JaradS. F. Mallak and J. Alzabut, Lyapunov type inequalities via fractional proportional derivatives and application on the free zero disc of Kilbas-Saigo generalized Mittag-Leffler functions, Eur. Phys. J. Plus, 134 (2019), 247.  doi: 10.1140/epjp/i2019-12772-1.  Google Scholar

[3]

T. Abdeljawad, J. Alzabut and F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives, Adv. Differ. Equ., 2017 (2017), Paper No. 321, 10 pp. doi: 10.1186/s13662-017-1383-z.  Google Scholar

[4]

T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Ineq. Appl., 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5.  Google Scholar

[5]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0.  Google Scholar

[6]

T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017), Art. ID 4149320, 8 pp. doi: 10.1155/2017/4149320.  Google Scholar

[7]

T. Abdeljawad and F. Madjidi, A Lyaponuv inequality for fractional difference operators with discrete Mittag-Leffler kernel of order 2 ≤ α < 5 = 2, Eur. Phys. J. Spec. Top., 226 (2017), 3355-3368.   Google Scholar

[8]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763-769.   Google Scholar

[9]

A. Atangana and J. F. Gomez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Soliton Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.  Google Scholar

[10]

D. Çakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comp., 216 (2010), 368-373.  doi: 10.1016/j.amc.2010.01.010.  Google Scholar

[11]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kerne, Prog. Frac. Diff. Appl., 1 (2015), 73-85.   Google Scholar

[12]

S. Clark and D. B. Hinton, A Lyapunov-type inequality for linear Hamiltonian systems, Math. Ineq. Appl., 1 (2010), 201-209.  doi: 10.7153/mia-01-18.  Google Scholar

[13]

B. Cuahutenango-BarroM. A. Taneco-Hernandez and J. F. Gomez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Solitons Fractals, 115 (2018), 283-299.  doi: 10.1016/j.chaos.2018.09.002.  Google Scholar

[14]

K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[15]

R. A. C. Ferreira, A Lyapunov-type inequality for a fractional initial value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.  doi: 10.2478/s13540-013-0060-5.  Google Scholar

[16]

R. A. C. Ferreira, Lyapunov-type inequalities for some sequential fractional initial value problems, Adv. Dyn. Syst. Appl., 11 (2016), 33-43.   Google Scholar

[17]

R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063.  doi: 10.1016/j.jmaa.2013.11.025.  Google Scholar

[18]

J. F. Gomez-AguilarA. Atangana and V. F. Morales-Delgado, Electrical circuits RC, LC and RL described by Atangana-Baleanu fractional derivatives, Int. J. Circ. theor. Appl., 45 (2017), 1514-1533.  doi: 10.1002/cta.2348.  Google Scholar

[19]

J. F. Gomez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 2017 (2017), 13pp.  doi: 10.1140/epjp/i2017-11293-3.  Google Scholar

[20]

J. F. Gomez-AguilarH. Yepez-MartinezR. F. Escobar-JimenezC. M. Astorga-Zaragoza and J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives, Appl. Math. Model., 40 (2016), 9079-9094.  doi: 10.1016/j.apm.2016.05.041.  Google Scholar

[21]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer Heidelberg New York Dordrecht London, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[22]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atagana-Baleanu derivative, Chaos Solitons Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[23]

F. JaradT. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Differ. Equ., 2012 (2012), 8pp.  doi: 10.1186/1687-1847-2012-142.  Google Scholar

[24]

F. JaradT. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619.   Google Scholar

[25]

M. Jleli and B. Samet, Lyapunov-type inequalities for fractional boundary value problems equation with fractional initial conditions, Electron. J. Diff. Equ., 2015 (2015), 1-11.   Google Scholar

[26]

U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.  doi: 10.1016/j.amc.2011.03.062.  Google Scholar

[27]

U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. App., 6 (2014), 1-15.   Google Scholar

[28]

A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[29]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[30]

A. A. Kilbas and M. Saigo, Fractional integrals and derivatives of Mittag-Leffler type function (Russian), Dokl. Akad. Nauk Belarusi, 39 (1995), 22-26,123.  Google Scholar

[31]

A. A. Kilbas and M. Saigo, On solutions of integral equations of Abel-Volterra type, Diff. Integral Equ., 8 (1995), 993-1011.   Google Scholar

[32]

A. M. Liapunov, Problème général de la stabilitie du mouvement, Ann. of Math. Stud., 17, Princeton Univ. Press, Princeton, N. J., 1949. Google Scholar

[33]

Q. MaC. Ma and J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Ineq., 11 (2017), 135-141.  doi: 10.7153/jmi-11-13.  Google Scholar

[34]

G. M. Mittag-Leffler, Sur la nouvelle fonction Eα (z), C. R. Acad. Sci. Paris, 137 (1903), 554-558.   Google Scholar

[35]

N. Parhi and S. Panigrahi, A Lyapunov-type integral inequality for higher order differential equations, Math. Slovaca, 52 (2002), 31-46.   Google Scholar

[36]

J. P. Pinasco, Lyapunov-type Inequalities, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-8523-0.  Google Scholar

[37]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, California, 1999.  Google Scholar

[38]

T. R. Prabhakar, A singular integral equation with a generalised Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.   Google Scholar

[39]

J. Rongand and C. Bai, Lyapunov-type inequality for afractional differential equation with fractional initial conditions, Adv. Differ. Equ., 2015 (2015), 10pp.  doi: 10.1186/s13662-015-0430-x.  Google Scholar

[40]

X. Yang, On Lyapunov-type inequality for certain higher-order differential equations, Appl. Math. Comp., 134 (2003), 307-317.  doi: 10.1016/S0096-3003(01)00285-5.  Google Scholar

[41]

X. Yang and K. Lo, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comp., 215 (2010), 3884-3890.  doi: 10.1016/j.amc.2009.11.032.  Google Scholar

[42]

H. YeJ. Gao and Y. Ding, A generalized Lyapunov inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.   Google Scholar

[43]

H. Yepez-Martinez and J. F. Gomez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comput. Appl. Math., 346 (2019), 247-260.  doi: 10.1016/j.cam.2018.07.023.  Google Scholar

[44]

H. Yepez-MartinezJ. F. Gomez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jimenez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Revista Mexicana Fisica, 62 (2016), 310-316.   Google Scholar

show all references

References:
[1]

T. Abdeljawad, B. Benli and D. Baleanu, A generalized q-Mittag-Leffler function by q-Captuo fractional linear equations, Abstract and Appl. Anal., 2012 (2012), Article ID 546062, 11pp. doi: 10.1155/2012/546062.  Google Scholar

[2]

T. AbdeljawadF. JaradS. F. Mallak and J. Alzabut, Lyapunov type inequalities via fractional proportional derivatives and application on the free zero disc of Kilbas-Saigo generalized Mittag-Leffler functions, Eur. Phys. J. Plus, 134 (2019), 247.  doi: 10.1140/epjp/i2019-12772-1.  Google Scholar

[3]

T. Abdeljawad, J. Alzabut and F. Jarad, A generalized Lyapunov-type inequality in the frame of conformable derivatives, Adv. Differ. Equ., 2017 (2017), Paper No. 321, 10 pp. doi: 10.1186/s13662-017-1383-z.  Google Scholar

[4]

T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Ineq. Appl., 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5.  Google Scholar

[5]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0.  Google Scholar

[6]

T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017), Art. ID 4149320, 8 pp. doi: 10.1155/2017/4149320.  Google Scholar

[7]

T. Abdeljawad and F. Madjidi, A Lyaponuv inequality for fractional difference operators with discrete Mittag-Leffler kernel of order 2 ≤ α < 5 = 2, Eur. Phys. J. Spec. Top., 226 (2017), 3355-3368.   Google Scholar

[8]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763-769.   Google Scholar

[9]

A. Atangana and J. F. Gomez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Soliton Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.  Google Scholar

[10]

D. Çakmak, Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comp., 216 (2010), 368-373.  doi: 10.1016/j.amc.2010.01.010.  Google Scholar

[11]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kerne, Prog. Frac. Diff. Appl., 1 (2015), 73-85.   Google Scholar

[12]

S. Clark and D. B. Hinton, A Lyapunov-type inequality for linear Hamiltonian systems, Math. Ineq. Appl., 1 (2010), 201-209.  doi: 10.7153/mia-01-18.  Google Scholar

[13]

B. Cuahutenango-BarroM. A. Taneco-Hernandez and J. F. Gomez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Solitons Fractals, 115 (2018), 283-299.  doi: 10.1016/j.chaos.2018.09.002.  Google Scholar

[14]

K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[15]

R. A. C. Ferreira, A Lyapunov-type inequality for a fractional initial value problem, Fract. Calc. Appl. Anal., 16 (2013), 978-984.  doi: 10.2478/s13540-013-0060-5.  Google Scholar

[16]

R. A. C. Ferreira, Lyapunov-type inequalities for some sequential fractional initial value problems, Adv. Dyn. Syst. Appl., 11 (2016), 33-43.   Google Scholar

[17]

R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058-1063.  doi: 10.1016/j.jmaa.2013.11.025.  Google Scholar

[18]

J. F. Gomez-AguilarA. Atangana and V. F. Morales-Delgado, Electrical circuits RC, LC and RL described by Atangana-Baleanu fractional derivatives, Int. J. Circ. theor. Appl., 45 (2017), 1514-1533.  doi: 10.1002/cta.2348.  Google Scholar

[19]

J. F. Gomez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, Eur. Phys. J. Plus, 2017 (2017), 13pp.  doi: 10.1140/epjp/i2017-11293-3.  Google Scholar

[20]

J. F. Gomez-AguilarH. Yepez-MartinezR. F. Escobar-JimenezC. M. Astorga-Zaragoza and J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives, Appl. Math. Model., 40 (2016), 9079-9094.  doi: 10.1016/j.apm.2016.05.041.  Google Scholar

[21]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer Heidelberg New York Dordrecht London, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[22]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atagana-Baleanu derivative, Chaos Solitons Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[23]

F. JaradT. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Differ. Equ., 2012 (2012), 8pp.  doi: 10.1186/1687-1847-2012-142.  Google Scholar

[24]

F. JaradT. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619.   Google Scholar

[25]

M. Jleli and B. Samet, Lyapunov-type inequalities for fractional boundary value problems equation with fractional initial conditions, Electron. J. Diff. Equ., 2015 (2015), 1-11.   Google Scholar

[26]

U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.  doi: 10.1016/j.amc.2011.03.062.  Google Scholar

[27]

U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. App., 6 (2014), 1-15.   Google Scholar

[28]

A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[29]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[30]

A. A. Kilbas and M. Saigo, Fractional integrals and derivatives of Mittag-Leffler type function (Russian), Dokl. Akad. Nauk Belarusi, 39 (1995), 22-26,123.  Google Scholar

[31]

A. A. Kilbas and M. Saigo, On solutions of integral equations of Abel-Volterra type, Diff. Integral Equ., 8 (1995), 993-1011.   Google Scholar

[32]

A. M. Liapunov, Problème général de la stabilitie du mouvement, Ann. of Math. Stud., 17, Princeton Univ. Press, Princeton, N. J., 1949. Google Scholar

[33]

Q. MaC. Ma and J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Ineq., 11 (2017), 135-141.  doi: 10.7153/jmi-11-13.  Google Scholar

[34]

G. M. Mittag-Leffler, Sur la nouvelle fonction Eα (z), C. R. Acad. Sci. Paris, 137 (1903), 554-558.   Google Scholar

[35]

N. Parhi and S. Panigrahi, A Lyapunov-type integral inequality for higher order differential equations, Math. Slovaca, 52 (2002), 31-46.   Google Scholar

[36]

J. P. Pinasco, Lyapunov-type Inequalities, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-8523-0.  Google Scholar

[37]

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, California, 1999.  Google Scholar

[38]

T. R. Prabhakar, A singular integral equation with a generalised Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.   Google Scholar

[39]

J. Rongand and C. Bai, Lyapunov-type inequality for afractional differential equation with fractional initial conditions, Adv. Differ. Equ., 2015 (2015), 10pp.  doi: 10.1186/s13662-015-0430-x.  Google Scholar

[40]

X. Yang, On Lyapunov-type inequality for certain higher-order differential equations, Appl. Math. Comp., 134 (2003), 307-317.  doi: 10.1016/S0096-3003(01)00285-5.  Google Scholar

[41]

X. Yang and K. Lo, Lyapunov-type inequality for a class of even-order differential equations, Appl. Math. Comp., 215 (2010), 3884-3890.  doi: 10.1016/j.amc.2009.11.032.  Google Scholar

[42]

H. YeJ. Gao and Y. Ding, A generalized Lyapunov inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.   Google Scholar

[43]

H. Yepez-Martinez and J. F. Gomez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comput. Appl. Math., 346 (2019), 247-260.  doi: 10.1016/j.cam.2018.07.023.  Google Scholar

[44]

H. Yepez-MartinezJ. F. Gomez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jimenez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Revista Mexicana Fisica, 62 (2016), 310-316.   Google Scholar

[1]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[2]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038

[3]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050

[4]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[5]

Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270

[6]

Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial & Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723

[7]

James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137

[8]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033

[9]

Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020171

[10]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058

[11]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[12]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020139

[13]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[14]

Tatiana Odzijewicz. Generalized fractional isoperimetric problem of several variables. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2617-2629. doi: 10.3934/dcdsb.2014.19.2617

[15]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[16]

Anurag Jayswal, Ashish Kumar Prasad, Izhar Ahmad. On minimax fractional programming problems involving generalized $(H_p,r)$-invex functions. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1001-1018. doi: 10.3934/jimo.2014.10.1001

[17]

Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028

[18]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[19]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[20]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (88)
  • HTML views (86)
  • Cited by (0)

[Back to Top]