• Previous Article
    Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries
  • DCDS-S Home
  • This Issue
  • Next Article
    Global bifurcation of solutions of the mean curvature spacelike equation in certain standard static spacetimes
doi: 10.3934/dcdss.2020213

Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials

1. 

Dipartimento di Matematica "F. Casorati", Università di Pavia, and Research Associates at the IMATI–C.N.R. Pavia, via Ferrata 5, 27100 Pavia, Italy

2. 

Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

3. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

* Corresponding author: Jürgen Sprekels

Received  December 2018 Revised  August 2019 Published  December 2019

Recently, the authors derived well-posedness and regularity results for general evolutionary operator equations having the structure of a Cahn–Hilliard system. The involved operators were fractional versions in the spectral sense of general linear operators that have compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions. The class of admissible double-well potentials driving the phase separation process modeled by the Cahn–Hilliard system included polynomial, logarithmic, and double obstacle nonlinearities. In a subsequent paper, distributed optimal control problems for such systems were investigated, where only differentiable polynomial and logarithmic potentials were admitted. Existence of optimizers and first-order optimality conditions were derived. In this paper, these results are complemented for nondifferentiable double obstacle nonlinearities. It is well known that for such nonlinearities standard constraint qualifications to construct Lagrange multipliers cannot be applied. To overcome this difficulty, we follow the so-called "deep quench" method, which has proved to be a powerful tool in optimal control problems with double obstacle potentials. We give a general convergence analysis of the deep quench approximation, including an error estimate, and demonstrate that its use leads to meaningful first-order necessary optimality conditions.

Citation: Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020213
References:
[1]

M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn–Hilliard equation, SIAM J. Numer. Anal., 55 (2017), 1689-1718.  doi: 10.1137/16M1075302.  Google Scholar

[2]

G. AkagiG. Schimperna and A. Segatti, Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations, J. Differential Equations, 261 (2016), 2935-2985.  doi: 10.1016/j.jde.2016.05.016.  Google Scholar

[3]

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inverse Problems, 35 (2019), 35 pp. doi: 10.1088/1361-6420/ab1299.  Google Scholar

[4]

H. Antil and E. Otárola, A FEM for an optimal control problem of fractional powers of elliptic operators, SIAM J. Control Optim., 53 (2015), 3432-3456.  doi: 10.1137/140975061.  Google Scholar

[5]

H. Antil and E. Otárola, An a posteriori error analysis for an optimal control problem involving the fractional Laplacian, IMA J. Numer. Anal., 38 (2018), 198-226.  doi: 10.1093/imanum/drx005.  Google Scholar

[6]

H. AntilE. Otárola and A. J. Salgado, A space-time fractional optimal control problem: analysis and discretization, SIAM J. Control Optim., 54 (2016), 1295-1328.  doi: 10.1137/15M1014991.  Google Scholar

[7]

H. AntilJ. Pfefferer and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control and discretization, Commun. Math. Sci., 16 (2018), 1395-1426.  doi: 10.4310/CMS.2018.v16.n5.a11.  Google Scholar

[8]

H. Antil and M. Warma, Optimal Control of Fractional Semilinear PDEs, ESAIM Control Optim. Calc. Var., 2019. doi: 10.1051/cocv/2019003.  Google Scholar

[9]

H. Antil and M. Warma, Optimal control of the coefficient for the regional fractal $p$–Laplace equation: approximation and convergence, Math. Control Relat. Fields, 9 (2019), 1-38.  doi: 10.3934/mcrf.2019001.  Google Scholar

[10]

V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[11]

T. Biswas, S. Dharmatti and M. T. Mohan, Pontryagins maximum principle for optimal control of the nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, preprint, arXiv: 1802.08413. Google Scholar

[12]

T. Biswas, S. Dharmatti and M. T. Mohan, Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations, preprint, arXiv: 1803.11337. Google Scholar

[13]

P. ColliM. H. Farshbaf-ShakerG. Gilardi and J. Sprekels, Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696-2721.  doi: 10.1137/140984749.  Google Scholar

[14]

P. ColliM. H. Farshbaf-ShakerG. Gilardi and J. Sprekels, Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Ann. Acad. Rom. Sci. Ser. Math. Appl., 7 (2015), 41-66.   Google Scholar

[15]

P. ColliM. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1-24.  doi: 10.1007/s00245-014-9250-8.  Google Scholar

[16]

P. ColliG. GilardiE. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518-2546.  doi: 10.1088/1361-6544/aa6e5f.  Google Scholar

[17]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325.  doi: 10.1515/anona-2015-0035.  Google Scholar

[18]

P. ColliG. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system, AIMS Mathematics, 1 (2016), 246-281.   Google Scholar

[19]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225.  doi: 10.1007/s00245-015-9299-z.  Google Scholar

[20]

P. ColliG. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential, Evol. Equ. Control Theory, 6 (2017), 35-58.  doi: 10.3934/eect.2017003.  Google Scholar

[21]

P. ColliG. Gilardi and J. Sprekels, On a Cahn-Hilliard system with convection and dynamic boundary conditions, Ann. Mat. Pura Appl., 197 (2018), 1445-1475.  doi: 10.1007/s10231-018-0732-1.  Google Scholar

[22]

P. ColliG. Gilardi and J. Sprekels, Optimal velocity control of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions, SIAM J. Control Optim., 56 (2018), 1665-1691.  doi: 10.1137/17M1146786.  Google Scholar

[23]

P. ColliG. Gilardi and J. Sprekels, Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: A `deep quench' approach, J. Convex Anal., 26 (2019), 485-514.   Google Scholar

[24]

P. ColliG. Gilardi and J. Sprekels, Well-posedness and regularity for a generalized fractional Cahn–Hilliard system, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 437-478.  doi: 10.4171/RLM/855.  Google Scholar

[25]

P. Colli, G. Gilardi and J. Sprekels, Optimal distributed control of a generalized fractional Cahn-Hilliard system, Appl. Math. Optim., (2018). doi: 10.1007/s00245-018-9540-7.  Google Scholar

[26]

P. Colli and J. Sprekels, Optimal boundary control of a nonstandard Cahn–Hilliard system with dynamic boundary condition and double obstacle inclusions, Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., Springer, Cham, 22 (2017), 151-182.   Google Scholar

[27]

N. Duan and X. Zhao, Optimal control for the multi-dimensional viscous Cahn–Hilliard equation, Electron. J. Differ. Equations, (2015), 13 pp.  Google Scholar

[28]

S. FrigeriC. G. Gal and M. Grasselli, On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, J. Nonlinear Sci., 26 (2016), 847-893.  doi: 10.1007/s00332-016-9292-y.  Google Scholar

[29]

S. FrigeriC. G. GalM. Grasselli and J. Sprekels, Two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with variable viscosity, degenerate mobility and singular potential, Nonlinearity, 32 (2019), 678-727.  doi: 10.1088/1361-6544/aaedd0.  Google Scholar

[30]

S. Frigeri, M. Grasselli and J. Sprekels, Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential, Appl. Math. Optim., (2018), 1–33. doi: 10.1007/s00245-018-9524-7.  Google Scholar

[31]

S. FrigeriE. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn– Hilliard/Navier–Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.  doi: 10.1137/140994800.  Google Scholar

[32]

T. Fukao and N. Yamazaki, A boundary control problem for the equation and dynamic boundary condition of Cahn–Hilliard type, Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., Springer, Cham, 22 (2017), 255-280.   Google Scholar

[33]

C. G. Gal, On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 37 (2017), 131-167.  doi: 10.3934/dcds.2017006.  Google Scholar

[34]

C. G. Gal, Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions, European J. Appl. Math., 28 (2017), 736-788.  doi: 10.1017/S0956792516000504.  Google Scholar

[35]

C. G. Gal, Doubly nonlocal Cahn-Hilliard equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 357-392.  doi: 10.1016/j.anihpc.2017.05.001.  Google Scholar

[36]

C. Geldhauser and E. Valdinoci, Optimizing the fractional power in a model with stochastic PDE constraints, Adv. Nonlinear Stud., 18 (2018), 649-669.  doi: 10.1515/ans-2018-2031.  Google Scholar

[37]

M. HintermüllerM. HinzeC. Kahle and T. Keil, A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard-Navier-Stokes system, Optim. Eng., 19 (2018), 629-662.  doi: 10.1007/s11081-018-9393-6.  Google Scholar

[38]

M. HintermüllerT. Keil and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with non-matched fluid densities, SIAM J. Control Optim., 55 (2017), 1954-1989.  doi: 10.1137/15M1025128.  Google Scholar

[39]

M. Hintermüller and D. Wegner, Distributed optimal control of the Cahn-Hilliard system including the case of a double obstacle homogeneous free energy density, SIAM J. Control Optim., 50 (2012), 388-418.  doi: 10.1137/110824152.  Google Scholar

[40]

M. Hintermüller and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system, SIAM J. Control Optim., 52 (2014), 747-772.  doi: 10.1137/120865628.  Google Scholar

[41]

M. Hintermüller and D. Wegner, Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies, Topological optimization and optimal transport, Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 17 (2017), 40-63.   Google Scholar

[42]

E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in three dimensions, SIAM J. Control Optim., 53 (2015), 1654-1680.  doi: 10.1137/140964308.  Google Scholar

[43]

A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach, Evol. Equ. Control Theory, 9 (2020), 193-217.   Google Scholar

[44]

J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl.(4), 146 (1987), 65–96. doi: 10.1007/BF01762360.  Google Scholar

[45]

J. Sprekels and E. Valdinoci, A new class of identification problems: Optimizing the fractional order in a nonlocal evolution equation, SIAM J. Control Optim., 55 (2017), 70-93.  doi: 10.1137/16M105575X.  Google Scholar

[46]

T. Tachim Medjo, Optimal control of a Cahn-Hilliard-Navier-Stokes model with state constraints, J. Convex Anal., 22 (2015), 1135-1172.   Google Scholar

[47]

Q. F. Wang and S.-i. Nakagiri, Weak solutions of Cahn–Hilliard equations having forcing terms and optimal control problems, Mathematical models in functional equations (Japanese) (Kyoto, 1999), Surikaisekikenkyusho Kokyuroku, 1128 (2000), 172-180.   Google Scholar

[48]

X. P. Zhao and C. C. Liu, Optimal control of the convective Cahn-Hilliard equation, Appl. Anal., 92 (2013), 1028-1045.  doi: 10.1080/00036811.2011.643786.  Google Scholar

[49]

X. P. Zhao and C. C. Liu, Optimal control of the convective Cahn-Hilliard equation in 2D case, Appl. Math. Optim., 70 (2014), 61-82.  doi: 10.1007/s00245-013-9234-0.  Google Scholar

[50]

J. Zheng, Time optimal controls of the Cahn-Hilliard equation with internal control, Optimal Control Appl. Methods, 36 (2015), 566-582.  doi: 10.1002/oca.2135.  Google Scholar

[51]

J. Zheng and Y. Wang, Optimal control problem for Cahn–Hilliard equations with state constraint, J. Dyn. Control Syst., 21 (2015), 257-272.  doi: 10.1007/s10883-014-9259-y.  Google Scholar

show all references

References:
[1]

M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn–Hilliard equation, SIAM J. Numer. Anal., 55 (2017), 1689-1718.  doi: 10.1137/16M1075302.  Google Scholar

[2]

G. AkagiG. Schimperna and A. Segatti, Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations, J. Differential Equations, 261 (2016), 2935-2985.  doi: 10.1016/j.jde.2016.05.016.  Google Scholar

[3]

H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inverse Problems, 35 (2019), 35 pp. doi: 10.1088/1361-6420/ab1299.  Google Scholar

[4]

H. Antil and E. Otárola, A FEM for an optimal control problem of fractional powers of elliptic operators, SIAM J. Control Optim., 53 (2015), 3432-3456.  doi: 10.1137/140975061.  Google Scholar

[5]

H. Antil and E. Otárola, An a posteriori error analysis for an optimal control problem involving the fractional Laplacian, IMA J. Numer. Anal., 38 (2018), 198-226.  doi: 10.1093/imanum/drx005.  Google Scholar

[6]

H. AntilE. Otárola and A. J. Salgado, A space-time fractional optimal control problem: analysis and discretization, SIAM J. Control Optim., 54 (2016), 1295-1328.  doi: 10.1137/15M1014991.  Google Scholar

[7]

H. AntilJ. Pfefferer and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control and discretization, Commun. Math. Sci., 16 (2018), 1395-1426.  doi: 10.4310/CMS.2018.v16.n5.a11.  Google Scholar

[8]

H. Antil and M. Warma, Optimal Control of Fractional Semilinear PDEs, ESAIM Control Optim. Calc. Var., 2019. doi: 10.1051/cocv/2019003.  Google Scholar

[9]

H. Antil and M. Warma, Optimal control of the coefficient for the regional fractal $p$–Laplace equation: approximation and convergence, Math. Control Relat. Fields, 9 (2019), 1-38.  doi: 10.3934/mcrf.2019001.  Google Scholar

[10]

V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[11]

T. Biswas, S. Dharmatti and M. T. Mohan, Pontryagins maximum principle for optimal control of the nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, preprint, arXiv: 1802.08413. Google Scholar

[12]

T. Biswas, S. Dharmatti and M. T. Mohan, Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations, preprint, arXiv: 1803.11337. Google Scholar

[13]

P. ColliM. H. Farshbaf-ShakerG. Gilardi and J. Sprekels, Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696-2721.  doi: 10.1137/140984749.  Google Scholar

[14]

P. ColliM. H. Farshbaf-ShakerG. Gilardi and J. Sprekels, Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Ann. Acad. Rom. Sci. Ser. Math. Appl., 7 (2015), 41-66.   Google Scholar

[15]

P. ColliM. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen-Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1-24.  doi: 10.1007/s00245-014-9250-8.  Google Scholar

[16]

P. ColliG. GilardiE. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518-2546.  doi: 10.1088/1361-6544/aa6e5f.  Google Scholar

[17]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal., 4 (2015), 311-325.  doi: 10.1515/anona-2015-0035.  Google Scholar

[18]

P. ColliG. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system, AIMS Mathematics, 1 (2016), 246-281.   Google Scholar

[19]

P. ColliG. Gilardi and J. Sprekels, A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Appl. Math. Optim., 73 (2016), 195-225.  doi: 10.1007/s00245-015-9299-z.  Google Scholar

[20]

P. ColliG. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential, Evol. Equ. Control Theory, 6 (2017), 35-58.  doi: 10.3934/eect.2017003.  Google Scholar

[21]

P. ColliG. Gilardi and J. Sprekels, On a Cahn-Hilliard system with convection and dynamic boundary conditions, Ann. Mat. Pura Appl., 197 (2018), 1445-1475.  doi: 10.1007/s10231-018-0732-1.  Google Scholar

[22]

P. ColliG. Gilardi and J. Sprekels, Optimal velocity control of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions, SIAM J. Control Optim., 56 (2018), 1665-1691.  doi: 10.1137/17M1146786.  Google Scholar

[23]

P. ColliG. Gilardi and J. Sprekels, Optimal velocity control of a convective Cahn-Hilliard system with double obstacles and dynamic boundary conditions: A `deep quench' approach, J. Convex Anal., 26 (2019), 485-514.   Google Scholar

[24]

P. ColliG. Gilardi and J. Sprekels, Well-posedness and regularity for a generalized fractional Cahn–Hilliard system, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30 (2019), 437-478.  doi: 10.4171/RLM/855.  Google Scholar

[25]

P. Colli, G. Gilardi and J. Sprekels, Optimal distributed control of a generalized fractional Cahn-Hilliard system, Appl. Math. Optim., (2018). doi: 10.1007/s00245-018-9540-7.  Google Scholar

[26]

P. Colli and J. Sprekels, Optimal boundary control of a nonstandard Cahn–Hilliard system with dynamic boundary condition and double obstacle inclusions, Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., Springer, Cham, 22 (2017), 151-182.   Google Scholar

[27]

N. Duan and X. Zhao, Optimal control for the multi-dimensional viscous Cahn–Hilliard equation, Electron. J. Differ. Equations, (2015), 13 pp.  Google Scholar

[28]

S. FrigeriC. G. Gal and M. Grasselli, On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions, J. Nonlinear Sci., 26 (2016), 847-893.  doi: 10.1007/s00332-016-9292-y.  Google Scholar

[29]

S. FrigeriC. G. GalM. Grasselli and J. Sprekels, Two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with variable viscosity, degenerate mobility and singular potential, Nonlinearity, 32 (2019), 678-727.  doi: 10.1088/1361-6544/aaedd0.  Google Scholar

[30]

S. Frigeri, M. Grasselli and J. Sprekels, Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential, Appl. Math. Optim., (2018), 1–33. doi: 10.1007/s00245-018-9524-7.  Google Scholar

[31]

S. FrigeriE. Rocca and J. Sprekels, Optimal distributed control of a nonlocal Cahn– Hilliard/Navier–Stokes system in two dimensions, SIAM J. Control Optim., 54 (2016), 221-250.  doi: 10.1137/140994800.  Google Scholar

[32]

T. Fukao and N. Yamazaki, A boundary control problem for the equation and dynamic boundary condition of Cahn–Hilliard type, Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., Springer, Cham, 22 (2017), 255-280.   Google Scholar

[33]

C. G. Gal, On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 37 (2017), 131-167.  doi: 10.3934/dcds.2017006.  Google Scholar

[34]

C. G. Gal, Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions, European J. Appl. Math., 28 (2017), 736-788.  doi: 10.1017/S0956792516000504.  Google Scholar

[35]

C. G. Gal, Doubly nonlocal Cahn-Hilliard equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 357-392.  doi: 10.1016/j.anihpc.2017.05.001.  Google Scholar

[36]

C. Geldhauser and E. Valdinoci, Optimizing the fractional power in a model with stochastic PDE constraints, Adv. Nonlinear Stud., 18 (2018), 649-669.  doi: 10.1515/ans-2018-2031.  Google Scholar

[37]

M. HintermüllerM. HinzeC. Kahle and T. Keil, A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn-Hilliard-Navier-Stokes system, Optim. Eng., 19 (2018), 629-662.  doi: 10.1007/s11081-018-9393-6.  Google Scholar

[38]

M. HintermüllerT. Keil and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with non-matched fluid densities, SIAM J. Control Optim., 55 (2017), 1954-1989.  doi: 10.1137/15M1025128.  Google Scholar

[39]

M. Hintermüller and D. Wegner, Distributed optimal control of the Cahn-Hilliard system including the case of a double obstacle homogeneous free energy density, SIAM J. Control Optim., 50 (2012), 388-418.  doi: 10.1137/110824152.  Google Scholar

[40]

M. Hintermüller and D. Wegner, Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system, SIAM J. Control Optim., 52 (2014), 747-772.  doi: 10.1137/120865628.  Google Scholar

[41]

M. Hintermüller and D. Wegner, Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies, Topological optimization and optimal transport, Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 17 (2017), 40-63.   Google Scholar

[42]

E. Rocca and J. Sprekels, Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in three dimensions, SIAM J. Control Optim., 53 (2015), 1654-1680.  doi: 10.1137/140964308.  Google Scholar

[43]

A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach, Evol. Equ. Control Theory, 9 (2020), 193-217.   Google Scholar

[44]

J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl.(4), 146 (1987), 65–96. doi: 10.1007/BF01762360.  Google Scholar

[45]

J. Sprekels and E. Valdinoci, A new class of identification problems: Optimizing the fractional order in a nonlocal evolution equation, SIAM J. Control Optim., 55 (2017), 70-93.  doi: 10.1137/16M105575X.  Google Scholar

[46]

T. Tachim Medjo, Optimal control of a Cahn-Hilliard-Navier-Stokes model with state constraints, J. Convex Anal., 22 (2015), 1135-1172.   Google Scholar

[47]

Q. F. Wang and S.-i. Nakagiri, Weak solutions of Cahn–Hilliard equations having forcing terms and optimal control problems, Mathematical models in functional equations (Japanese) (Kyoto, 1999), Surikaisekikenkyusho Kokyuroku, 1128 (2000), 172-180.   Google Scholar

[48]

X. P. Zhao and C. C. Liu, Optimal control of the convective Cahn-Hilliard equation, Appl. Anal., 92 (2013), 1028-1045.  doi: 10.1080/00036811.2011.643786.  Google Scholar

[49]

X. P. Zhao and C. C. Liu, Optimal control of the convective Cahn-Hilliard equation in 2D case, Appl. Math. Optim., 70 (2014), 61-82.  doi: 10.1007/s00245-013-9234-0.  Google Scholar

[50]

J. Zheng, Time optimal controls of the Cahn-Hilliard equation with internal control, Optimal Control Appl. Methods, 36 (2015), 566-582.  doi: 10.1002/oca.2135.  Google Scholar

[51]

J. Zheng and Y. Wang, Optimal control problem for Cahn–Hilliard equations with state constraint, J. Dyn. Control Syst., 21 (2015), 257-272.  doi: 10.1007/s10883-014-9259-y.  Google Scholar

[1]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[2]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[3]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[4]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[5]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[6]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020002

[7]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[8]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[9]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[10]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[11]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[12]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[13]

Monika Dryl, Delfim F. M. Torres. Necessary optimality conditions for infinite horizon variational problems on time scales. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 145-160. doi: 10.3934/naco.2013.3.145

[14]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[15]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[16]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[17]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[18]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[19]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[20]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (22)
  • HTML views (46)
  • Cited by (0)

[Back to Top]