• Previous Article
    Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves
  • DCDS-S Home
  • This Issue
  • Next Article
    Stability analysis of an equation with two delays and application to the production of platelets
doi: 10.3934/dcdss.2020214

Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation

1. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

2. 

African Institute for Mathematical Sciences, Muizenberg, Cape Town, South Africa

3. 

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

4. 

College of mechanical and automotive engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China

5. 

International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho, 2735, South Africa

* Corresponding author: Lijun Zhang

Received  November 2018 Revised  July 2019 Published  December 2019

Fund Project: This work is supported by NSF grant No. 11672270 and No.11872335.

The bounded traveling wave solutions of the Zakharov-Rubenchik equation are investigated by using the method of dynamical system theorems in this paper. After suitable transformations we find that the traveling wave equations of the Zakharov-Rubenchik equation are fully determined by a second-order singular ordinary differential equation (ODE) with three real coefficients which can be arbitrary constants. We derive abundant exact bounded periodic and solitary wave solutions of the Zakharov-Rubenchik equation via studying the bifurcations and exact solutions of the derived ODE.

Citation: Lijun Zhang, Peiying Yuan, Jingli Fu, Chaudry Masood Khalique. Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020214
References:
[1]

S. AbbasbandyE. Babolian and M. Ashtiani, Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4114-4121.  doi: 10.1016/j.cnsns.2009.03.001.  Google Scholar

[2]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York-Berlin, 1971. Google Scholar

[3]

H. DingC. W. Lim and L. Q. Chen, Nonlinear vibration of a traveling belt with non-homogeneous boundaries, J Sound Vib., 424 (2018), 78-93.  doi: 10.1016/j.jsv.2018.03.010.  Google Scholar

[4]

J. GuY. Zhang and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 76 (2018), 1408-1419.  doi: 10.1016/j.camwa.2018.06.034.  Google Scholar

[5]

B. GuoJ. Zhang and X. Pu, On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., 365 (2010), 238-253.  doi: 10.1016/j.jmaa.2009.10.045.  Google Scholar

[6]

M. HanL. ZhangY. Wang and C. M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.  doi: 10.1016/j.nonrwa.2018.10.012.  Google Scholar

[7]

J. He and X. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.  doi: 10.1016/j.chaos.2006.03.020.  Google Scholar

[8]

C. HeY. Tang and J. Ma, New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.  doi: 10.1016/j.camwa.2018.08.012.  Google Scholar

[9]

M. Javidi and A. Golbabai, Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Soliton Fractals, 36 (2008), 309-313.  doi: 10.1016/j.chaos.2006.06.088.  Google Scholar

[10]

F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.   Google Scholar

[11]

X. Li and Q. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 121 (2017), 123-137.  doi: 10.1016/j.geomphys.2017.07.010.  Google Scholar

[12]

F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.  doi: 10.1016/j.amc.2015.11.018.  Google Scholar

[13] J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.   Google Scholar
[14]

J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Modeling Analysis, 1 (2019), 1-10.   Google Scholar

[15]

F. Linares and C. Matheus, Well posedness for the 1D Zakharov-Rubenchik system, Adv. Differential Equations, 14 (2009), 261-288.   Google Scholar

[16]

T. Liu and H. Dong, The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann-Hilbert approach, Mathematics, 7 (2019), 170 pp. doi: 10.3390/math7020170.  Google Scholar

[17]

Y. LiuH. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.  doi: 10.1007/s13324-018-0209-9.  Google Scholar

[18]

C. LuL. Xie and H. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.  doi: 10.1016/j.camwa.2019.01.022.  Google Scholar

[19]

Y. Ren, M. Tao, H. Dong and H. Yang, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Difference Equ., 13 (2019), 9 pp. doi: 10.1186/s13662-019-1952-4.  Google Scholar

[20]

W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2667-2678.  doi: 10.1016/j.cnsns.2013.01.020.  Google Scholar

[21]

F. Oliveira, Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D, 175 (2003), 220-240.  doi: 10.1016/S0167-2789(02)00722-4.  Google Scholar

[22]

F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik Equation, Reports Math. Phys., 61 (2008), 13-27.  doi: 10.1016/S0034-4877(08)00006-2.  Google Scholar

[23]

G. Ponce and J. C. Saut, Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Disc. Contin. Dyn. Syst., 13 (2005), 811-825.  doi: 10.3934/dcds.2005.13.811.  Google Scholar

[24]

Y. WangC. DaiL. Wu and J. Zhang, Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Soliton Fractals, 32 (2007), 1208-1214.  doi: 10.1016/j.chaos.2005.11.071.  Google Scholar

[25]

V. E. Zakharov, Collapse of Langmuir Waves, Soviet Physics-JETP, 35 (1972), 908-914.   Google Scholar

[26]

Y. ZhangH. H. DongX. E. Zhang and H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Compu. Math. Appl., 73 (2017), 246-252.  doi: 10.1016/j.camwa.2016.11.009.  Google Scholar

[27]

L. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[28]

L. ZhangY. WangC. M. Khlique and Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 8 (2018), 1938-1958.   Google Scholar

[29]

J. ZhangL. Zhang and Y. Bai, Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.  doi: 10.3390/math7050432.  Google Scholar

[30]

H. Zhao and W. Ma, Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.  doi: 10.1016/j.camwa.2017.06.034.  Google Scholar

[31]

Q. L. Zhao and X. Y. Li, A Bargmann system and the involutive solutions associated with a new 4-Order Lattice hierarchy, Anal. Math Phys., 6 (2016), 237-254.  doi: 10.1007/s13324-015-0116-2.  Google Scholar

[32]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623-2633.  doi: 10.1002/mma.4187.  Google Scholar

show all references

References:
[1]

S. AbbasbandyE. Babolian and M. Ashtiani, Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4114-4121.  doi: 10.1016/j.cnsns.2009.03.001.  Google Scholar

[2]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York-Berlin, 1971. Google Scholar

[3]

H. DingC. W. Lim and L. Q. Chen, Nonlinear vibration of a traveling belt with non-homogeneous boundaries, J Sound Vib., 424 (2018), 78-93.  doi: 10.1016/j.jsv.2018.03.010.  Google Scholar

[4]

J. GuY. Zhang and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 76 (2018), 1408-1419.  doi: 10.1016/j.camwa.2018.06.034.  Google Scholar

[5]

B. GuoJ. Zhang and X. Pu, On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., 365 (2010), 238-253.  doi: 10.1016/j.jmaa.2009.10.045.  Google Scholar

[6]

M. HanL. ZhangY. Wang and C. M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.  doi: 10.1016/j.nonrwa.2018.10.012.  Google Scholar

[7]

J. He and X. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.  doi: 10.1016/j.chaos.2006.03.020.  Google Scholar

[8]

C. HeY. Tang and J. Ma, New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.  doi: 10.1016/j.camwa.2018.08.012.  Google Scholar

[9]

M. Javidi and A. Golbabai, Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Soliton Fractals, 36 (2008), 309-313.  doi: 10.1016/j.chaos.2006.06.088.  Google Scholar

[10]

F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.   Google Scholar

[11]

X. Li and Q. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 121 (2017), 123-137.  doi: 10.1016/j.geomphys.2017.07.010.  Google Scholar

[12]

F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.  doi: 10.1016/j.amc.2015.11.018.  Google Scholar

[13] J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.   Google Scholar
[14]

J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Modeling Analysis, 1 (2019), 1-10.   Google Scholar

[15]

F. Linares and C. Matheus, Well posedness for the 1D Zakharov-Rubenchik system, Adv. Differential Equations, 14 (2009), 261-288.   Google Scholar

[16]

T. Liu and H. Dong, The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann-Hilbert approach, Mathematics, 7 (2019), 170 pp. doi: 10.3390/math7020170.  Google Scholar

[17]

Y. LiuH. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.  doi: 10.1007/s13324-018-0209-9.  Google Scholar

[18]

C. LuL. Xie and H. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.  doi: 10.1016/j.camwa.2019.01.022.  Google Scholar

[19]

Y. Ren, M. Tao, H. Dong and H. Yang, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Difference Equ., 13 (2019), 9 pp. doi: 10.1186/s13662-019-1952-4.  Google Scholar

[20]

W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2667-2678.  doi: 10.1016/j.cnsns.2013.01.020.  Google Scholar

[21]

F. Oliveira, Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D, 175 (2003), 220-240.  doi: 10.1016/S0167-2789(02)00722-4.  Google Scholar

[22]

F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik Equation, Reports Math. Phys., 61 (2008), 13-27.  doi: 10.1016/S0034-4877(08)00006-2.  Google Scholar

[23]

G. Ponce and J. C. Saut, Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Disc. Contin. Dyn. Syst., 13 (2005), 811-825.  doi: 10.3934/dcds.2005.13.811.  Google Scholar

[24]

Y. WangC. DaiL. Wu and J. Zhang, Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Soliton Fractals, 32 (2007), 1208-1214.  doi: 10.1016/j.chaos.2005.11.071.  Google Scholar

[25]

V. E. Zakharov, Collapse of Langmuir Waves, Soviet Physics-JETP, 35 (1972), 908-914.   Google Scholar

[26]

Y. ZhangH. H. DongX. E. Zhang and H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Compu. Math. Appl., 73 (2017), 246-252.  doi: 10.1016/j.camwa.2016.11.009.  Google Scholar

[27]

L. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[28]

L. ZhangY. WangC. M. Khlique and Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 8 (2018), 1938-1958.   Google Scholar

[29]

J. ZhangL. Zhang and Y. Bai, Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.  doi: 10.3390/math7050432.  Google Scholar

[30]

H. Zhao and W. Ma, Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.  doi: 10.1016/j.camwa.2017.06.034.  Google Scholar

[31]

Q. L. Zhao and X. Y. Li, A Bargmann system and the involutive solutions associated with a new 4-Order Lattice hierarchy, Anal. Math Phys., 6 (2016), 237-254.  doi: 10.1007/s13324-015-0116-2.  Google Scholar

[32]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623-2633.  doi: 10.1002/mma.4187.  Google Scholar

Figure 1.  Phase portraits of system (13) with $ b = 0 $. (a) $ d<0 $ $ \& $ $ a>0 $; (b) $ d>0 $ $ \& $ $ a<0 $; (c) $ d\leq0 $ $ \& $ $ a<0 $
Figure 2.  Phase portraits of system (13) with $ b>0 $. (A) $ d>0 $, $ a<0 $ $ \& $ $ 0<b<-\frac{4a^3}{27d^2} $; (B) $ d<0 $ $ \& $ $ a\geq0 $ or $ d\leq0 $ $ \& $ $ a<0 $
[1]

Hung Luong, Norbert J. Mauser, Jean-Claude Saut. On the Cauchy problem for the Zakharov-Rubenchik/ Benney-Roskes system. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1573-1594. doi: 10.3934/cpaa.2018075

[2]

José R. Quintero, Juan C. Cordero. Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the Zakharov equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1213-1240. doi: 10.3934/dcdsb.2019217

[3]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[4]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[5]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020129

[6]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[7]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[8]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[9]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[10]

Roger Lui, Hirokazu Ninomiya. Traveling wave solutions for a bacteria system with density-suppressed motility. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 931-940. doi: 10.3934/dcdsb.2018213

[11]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[12]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[13]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[14]

Nobu Kishimoto. Resonant decomposition and the $I$-method for the two-dimensional Zakharov system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4095-4122. doi: 10.3934/dcds.2013.33.4095

[15]

Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061

[16]

Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173

[17]

Wenjie Zuo, Junping Shi. Traveling wave solutions of a diffusive ratio-dependent Holling-Tanner system with distributed delay. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1179-1200. doi: 10.3934/cpaa.2018057

[18]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[19]

Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074

[20]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (37)
  • HTML views (132)
  • Cited by (0)

[Back to Top]