October  2020, 13(10): 2927-2939. doi: 10.3934/dcdss.2020214

Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation

1. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

2. 

African Institute for Mathematical Sciences, Muizenberg, Cape Town, South Africa

3. 

Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

4. 

College of mechanical and automotive engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China

5. 

International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho, 2735, South Africa

* Corresponding author: Lijun Zhang

Received  November 2018 Revised  July 2019 Published  December 2019

Fund Project: This work is supported by NSF grant No. 11672270 and No.11872335

The bounded traveling wave solutions of the Zakharov-Rubenchik equation are investigated by using the method of dynamical system theorems in this paper. After suitable transformations we find that the traveling wave equations of the Zakharov-Rubenchik equation are fully determined by a second-order singular ordinary differential equation (ODE) with three real coefficients which can be arbitrary constants. We derive abundant exact bounded periodic and solitary wave solutions of the Zakharov-Rubenchik equation via studying the bifurcations and exact solutions of the derived ODE.

Citation: Lijun Zhang, Peiying Yuan, Jingli Fu, Chaudry Masood Khalique. Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2927-2939. doi: 10.3934/dcdss.2020214
References:
[1]

S. AbbasbandyE. Babolian and M. Ashtiani, Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4114-4121.  doi: 10.1016/j.cnsns.2009.03.001.  Google Scholar

[2]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York-Berlin, 1971. Google Scholar

[3]

H. DingC. W. Lim and L. Q. Chen, Nonlinear vibration of a traveling belt with non-homogeneous boundaries, J Sound Vib., 424 (2018), 78-93.  doi: 10.1016/j.jsv.2018.03.010.  Google Scholar

[4]

J. GuY. Zhang and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 76 (2018), 1408-1419.  doi: 10.1016/j.camwa.2018.06.034.  Google Scholar

[5]

B. GuoJ. Zhang and X. Pu, On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., 365 (2010), 238-253.  doi: 10.1016/j.jmaa.2009.10.045.  Google Scholar

[6]

M. HanL. ZhangY. Wang and C. M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.  doi: 10.1016/j.nonrwa.2018.10.012.  Google Scholar

[7]

J. He and X. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.  doi: 10.1016/j.chaos.2006.03.020.  Google Scholar

[8]

C. HeY. Tang and J. Ma, New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.  doi: 10.1016/j.camwa.2018.08.012.  Google Scholar

[9]

M. Javidi and A. Golbabai, Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Soliton Fractals, 36 (2008), 309-313.  doi: 10.1016/j.chaos.2006.06.088.  Google Scholar

[10]

F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.   Google Scholar

[11]

X. Li and Q. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 121 (2017), 123-137.  doi: 10.1016/j.geomphys.2017.07.010.  Google Scholar

[12]

F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.  doi: 10.1016/j.amc.2015.11.018.  Google Scholar

[13] J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.   Google Scholar
[14]

J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Modeling Analysis, 1 (2019), 1-10.   Google Scholar

[15]

F. Linares and C. Matheus, Well posedness for the 1D Zakharov-Rubenchik system, Adv. Differential Equations, 14 (2009), 261-288.   Google Scholar

[16]

T. Liu and H. Dong, The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann-Hilbert approach, Mathematics, 7 (2019), 170 pp. doi: 10.3390/math7020170.  Google Scholar

[17]

Y. LiuH. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.  doi: 10.1007/s13324-018-0209-9.  Google Scholar

[18]

C. LuL. Xie and H. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.  doi: 10.1016/j.camwa.2019.01.022.  Google Scholar

[19]

Y. Ren, M. Tao, H. Dong and H. Yang, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Difference Equ., 13 (2019), 9 pp. doi: 10.1186/s13662-019-1952-4.  Google Scholar

[20]

W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2667-2678.  doi: 10.1016/j.cnsns.2013.01.020.  Google Scholar

[21]

F. Oliveira, Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D, 175 (2003), 220-240.  doi: 10.1016/S0167-2789(02)00722-4.  Google Scholar

[22]

F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik Equation, Reports Math. Phys., 61 (2008), 13-27.  doi: 10.1016/S0034-4877(08)00006-2.  Google Scholar

[23]

G. Ponce and J. C. Saut, Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Disc. Contin. Dyn. Syst., 13 (2005), 811-825.  doi: 10.3934/dcds.2005.13.811.  Google Scholar

[24]

Y. WangC. DaiL. Wu and J. Zhang, Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Soliton Fractals, 32 (2007), 1208-1214.  doi: 10.1016/j.chaos.2005.11.071.  Google Scholar

[25]

V. E. Zakharov, Collapse of Langmuir Waves, Soviet Physics-JETP, 35 (1972), 908-914.   Google Scholar

[26]

Y. ZhangH. H. DongX. E. Zhang and H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Compu. Math. Appl., 73 (2017), 246-252.  doi: 10.1016/j.camwa.2016.11.009.  Google Scholar

[27]

L. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[28]

L. ZhangY. WangC. M. Khlique and Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 8 (2018), 1938-1958.   Google Scholar

[29]

J. ZhangL. Zhang and Y. Bai, Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.  doi: 10.3390/math7050432.  Google Scholar

[30]

H. Zhao and W. Ma, Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.  doi: 10.1016/j.camwa.2017.06.034.  Google Scholar

[31]

Q. L. Zhao and X. Y. Li, A Bargmann system and the involutive solutions associated with a new 4-Order Lattice hierarchy, Anal. Math Phys., 6 (2016), 237-254.  doi: 10.1007/s13324-015-0116-2.  Google Scholar

[32]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623-2633.  doi: 10.1002/mma.4187.  Google Scholar

show all references

References:
[1]

S. AbbasbandyE. Babolian and M. Ashtiani, Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4114-4121.  doi: 10.1016/j.cnsns.2009.03.001.  Google Scholar

[2]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York-Berlin, 1971. Google Scholar

[3]

H. DingC. W. Lim and L. Q. Chen, Nonlinear vibration of a traveling belt with non-homogeneous boundaries, J Sound Vib., 424 (2018), 78-93.  doi: 10.1016/j.jsv.2018.03.010.  Google Scholar

[4]

J. GuY. Zhang and H. Dong, Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 76 (2018), 1408-1419.  doi: 10.1016/j.camwa.2018.06.034.  Google Scholar

[5]

B. GuoJ. Zhang and X. Pu, On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., 365 (2010), 238-253.  doi: 10.1016/j.jmaa.2009.10.045.  Google Scholar

[6]

M. HanL. ZhangY. Wang and C. M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.  doi: 10.1016/j.nonrwa.2018.10.012.  Google Scholar

[7]

J. He and X. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.  doi: 10.1016/j.chaos.2006.03.020.  Google Scholar

[8]

C. HeY. Tang and J. Ma, New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.  doi: 10.1016/j.camwa.2018.08.012.  Google Scholar

[9]

M. Javidi and A. Golbabai, Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Soliton Fractals, 36 (2008), 309-313.  doi: 10.1016/j.chaos.2006.06.088.  Google Scholar

[10]

F. Li and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.   Google Scholar

[11]

X. Li and Q. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 121 (2017), 123-137.  doi: 10.1016/j.geomphys.2017.07.010.  Google Scholar

[12]

F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.  doi: 10.1016/j.amc.2015.11.018.  Google Scholar

[13] J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.   Google Scholar
[14]

J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Modeling Analysis, 1 (2019), 1-10.   Google Scholar

[15]

F. Linares and C. Matheus, Well posedness for the 1D Zakharov-Rubenchik system, Adv. Differential Equations, 14 (2009), 261-288.   Google Scholar

[16]

T. Liu and H. Dong, The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann-Hilbert approach, Mathematics, 7 (2019), 170 pp. doi: 10.3390/math7020170.  Google Scholar

[17]

Y. LiuH. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.  doi: 10.1007/s13324-018-0209-9.  Google Scholar

[18]

C. LuL. Xie and H. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.  doi: 10.1016/j.camwa.2019.01.022.  Google Scholar

[19]

Y. Ren, M. Tao, H. Dong and H. Yang, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Difference Equ., 13 (2019), 9 pp. doi: 10.1186/s13662-019-1952-4.  Google Scholar

[20]

W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2667-2678.  doi: 10.1016/j.cnsns.2013.01.020.  Google Scholar

[21]

F. Oliveira, Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D, 175 (2003), 220-240.  doi: 10.1016/S0167-2789(02)00722-4.  Google Scholar

[22]

F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik Equation, Reports Math. Phys., 61 (2008), 13-27.  doi: 10.1016/S0034-4877(08)00006-2.  Google Scholar

[23]

G. Ponce and J. C. Saut, Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Disc. Contin. Dyn. Syst., 13 (2005), 811-825.  doi: 10.3934/dcds.2005.13.811.  Google Scholar

[24]

Y. WangC. DaiL. Wu and J. Zhang, Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Soliton Fractals, 32 (2007), 1208-1214.  doi: 10.1016/j.chaos.2005.11.071.  Google Scholar

[25]

V. E. Zakharov, Collapse of Langmuir Waves, Soviet Physics-JETP, 35 (1972), 908-914.   Google Scholar

[26]

Y. ZhangH. H. DongX. E. Zhang and H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Compu. Math. Appl., 73 (2017), 246-252.  doi: 10.1016/j.camwa.2016.11.009.  Google Scholar

[27]

L. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[28]

L. ZhangY. WangC. M. Khlique and Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 8 (2018), 1938-1958.   Google Scholar

[29]

J. ZhangL. Zhang and Y. Bai, Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.  doi: 10.3390/math7050432.  Google Scholar

[30]

H. Zhao and W. Ma, Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.  doi: 10.1016/j.camwa.2017.06.034.  Google Scholar

[31]

Q. L. Zhao and X. Y. Li, A Bargmann system and the involutive solutions associated with a new 4-Order Lattice hierarchy, Anal. Math Phys., 6 (2016), 237-254.  doi: 10.1007/s13324-015-0116-2.  Google Scholar

[32]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623-2633.  doi: 10.1002/mma.4187.  Google Scholar

Figure 1.  Phase portraits of system (13) with $ b = 0 $. (a) $ d<0 $ $ \& $ $ a>0 $; (b) $ d>0 $ $ \& $ $ a<0 $; (c) $ d\leq0 $ $ \& $ $ a<0 $
Figure 2.  Phase portraits of system (13) with $ b>0 $. (A) $ d>0 $, $ a<0 $ $ \& $ $ 0<b<-\frac{4a^3}{27d^2} $; (B) $ d<0 $ $ \& $ $ a\geq0 $ or $ d\leq0 $ $ \& $ $ a<0 $
[1]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[4]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[5]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[6]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[7]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[8]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[9]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[10]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[11]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[12]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[15]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[17]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[20]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (122)
  • HTML views (300)
  • Cited by (0)

[Back to Top]