
-
Previous Article
A study on lump solutions to a (2+1)-dimensional completely generalized Hirota-Satsuma-Ito equation
- DCDS-S Home
- This Issue
-
Next Article
Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations
Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation
1. | College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China |
2. | African Institute for Mathematical Sciences, Muizenberg, Cape Town, South Africa |
3. | Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China |
4. | College of mechanical and automotive engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang 310018, China |
5. | International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho, 2735, South Africa |
The bounded traveling wave solutions of the Zakharov-Rubenchik equation are investigated by using the method of dynamical system theorems in this paper. After suitable transformations we find that the traveling wave equations of the Zakharov-Rubenchik equation are fully determined by a second-order singular ordinary differential equation (ODE) with three real coefficients which can be arbitrary constants. We derive abundant exact bounded periodic and solitary wave solutions of the Zakharov-Rubenchik equation via studying the bifurcations and exact solutions of the derived ODE.
References:
[1] |
S. Abbasbandy, E. Babolian and M. Ashtiani,
Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4114-4121.
doi: 10.1016/j.cnsns.2009.03.001. |
[2] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York-Berlin, 1971. Google Scholar |
[3] |
H. Ding, C. W. Lim and L. Q. Chen,
Nonlinear vibration of a traveling belt with non-homogeneous boundaries, J Sound Vib., 424 (2018), 78-93.
doi: 10.1016/j.jsv.2018.03.010. |
[4] |
J. Gu, Y. Zhang and H. Dong,
Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 76 (2018), 1408-1419.
doi: 10.1016/j.camwa.2018.06.034. |
[5] |
B. Guo, J. Zhang and X. Pu,
On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., 365 (2010), 238-253.
doi: 10.1016/j.jmaa.2009.10.045. |
[6] |
M. Han, L. Zhang, Y. Wang and C. M. Khalique,
The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.
doi: 10.1016/j.nonrwa.2018.10.012. |
[7] |
J. He and X. Wu,
Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.
doi: 10.1016/j.chaos.2006.03.020. |
[8] |
C. He, Y. Tang and J. Ma,
New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.
doi: 10.1016/j.camwa.2018.08.012. |
[9] |
M. Javidi and A. Golbabai,
Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Soliton Fractals, 36 (2008), 309-313.
doi: 10.1016/j.chaos.2006.06.088. |
[10] |
F. Li and G. Du,
General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.
|
[11] |
X. Li and Q. Zhao,
A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 121 (2017), 123-137.
doi: 10.1016/j.geomphys.2017.07.010. |
[12] |
F. Li and Q. Gao,
Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.
doi: 10.1016/j.amc.2015.11.018. |
[13] | J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013. Google Scholar |
[14] |
J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Modeling Analysis, 1 (2019), 1-10. Google Scholar |
[15] |
F. Linares and C. Matheus,
Well posedness for the 1D Zakharov-Rubenchik system, Adv. Differential Equations, 14 (2009), 261-288.
|
[16] |
T. Liu and H. Dong, The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann-Hilbert approach, Mathematics, 7 (2019), 170 pp.
doi: 10.3390/math7020170. |
[17] |
Y. Liu, H. Dong and Y. Zhang,
Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.
doi: 10.1007/s13324-018-0209-9. |
[18] |
C. Lu, L. Xie and H. Yang,
Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.
doi: 10.1016/j.camwa.2019.01.022. |
[19] |
Y. Ren, M. Tao, H. Dong and H. Yang, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Difference Equ., 13 (2019), 9 pp.
doi: 10.1186/s13662-019-1952-4. |
[20] |
W. G. Rui,
Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2667-2678.
doi: 10.1016/j.cnsns.2013.01.020. |
[21] |
F. Oliveira,
Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D, 175 (2003), 220-240.
doi: 10.1016/S0167-2789(02)00722-4. |
[22] |
F. Oliveira,
Adiabatic limit of the Zakharov-Rubenchik Equation, Reports Math. Phys., 61 (2008), 13-27.
doi: 10.1016/S0034-4877(08)00006-2. |
[23] |
G. Ponce and J. C. Saut,
Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Disc. Contin. Dyn. Syst., 13 (2005), 811-825.
doi: 10.3934/dcds.2005.13.811. |
[24] |
Y. Wang, C. Dai, L. Wu and J. Zhang,
Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Soliton Fractals, 32 (2007), 1208-1214.
doi: 10.1016/j.chaos.2005.11.071. |
[25] |
V. E. Zakharov, Collapse of Langmuir Waves, Soviet Physics-JETP, 35 (1972), 908-914. Google Scholar |
[26] |
Y. Zhang, H. H. Dong, X. E. Zhang and H. W. Yang,
Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Compu. Math. Appl., 73 (2017), 246-252.
doi: 10.1016/j.camwa.2016.11.009. |
[27] |
L. Zhang and C. M. Khalique,
Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.
doi: 10.3934/dcdss.2018048. |
[28] |
L. Zhang, Y. Wang, C. M. Khlique and Y. Bai,
Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 8 (2018), 1938-1958.
|
[29] |
J. Zhang, L. Zhang and Y. Bai,
Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.
doi: 10.3390/math7050432. |
[30] |
H. Zhao and W. Ma,
Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.
doi: 10.1016/j.camwa.2017.06.034. |
[31] |
Q. L. Zhao and X. Y. Li,
A Bargmann system and the involutive solutions associated with a new 4-Order Lattice hierarchy, Anal. Math Phys., 6 (2016), 237-254.
doi: 10.1007/s13324-015-0116-2. |
[32] |
X. X. Zheng, Y. D. Shang and X. M. Peng,
Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623-2633.
doi: 10.1002/mma.4187. |
show all references
References:
[1] |
S. Abbasbandy, E. Babolian and M. Ashtiani,
Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4114-4121.
doi: 10.1016/j.cnsns.2009.03.001. |
[2] |
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York-Berlin, 1971. Google Scholar |
[3] |
H. Ding, C. W. Lim and L. Q. Chen,
Nonlinear vibration of a traveling belt with non-homogeneous boundaries, J Sound Vib., 424 (2018), 78-93.
doi: 10.1016/j.jsv.2018.03.010. |
[4] |
J. Gu, Y. Zhang and H. Dong,
Dynamic behaviors of interaction solutions of (3+1)-dimensional Shallow Water wave equation, Comp. Math. Appl., 76 (2018), 1408-1419.
doi: 10.1016/j.camwa.2018.06.034. |
[5] |
B. Guo, J. Zhang and X. Pu,
On the existence and uniqueness of smooth solution for a generalized Zakharov equation, J. Math. Anal. Appl., 365 (2010), 238-253.
doi: 10.1016/j.jmaa.2009.10.045. |
[6] |
M. Han, L. Zhang, Y. Wang and C. M. Khalique,
The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.
doi: 10.1016/j.nonrwa.2018.10.012. |
[7] |
J. He and X. Wu,
Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30 (2006), 700-708.
doi: 10.1016/j.chaos.2006.03.020. |
[8] |
C. He, Y. Tang and J. Ma,
New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.
doi: 10.1016/j.camwa.2018.08.012. |
[9] |
M. Javidi and A. Golbabai,
Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos Soliton Fractals, 36 (2008), 309-313.
doi: 10.1016/j.chaos.2006.06.088. |
[10] |
F. Li and G. Du,
General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.
|
[11] |
X. Li and Q. Zhao,
A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 121 (2017), 123-137.
doi: 10.1016/j.geomphys.2017.07.010. |
[12] |
F. Li and Q. Gao,
Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.
doi: 10.1016/j.amc.2015.11.018. |
[13] | J. Li, Singular Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013. Google Scholar |
[14] |
J. Li, Geometric properties and exact traveling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Modeling Analysis, 1 (2019), 1-10. Google Scholar |
[15] |
F. Linares and C. Matheus,
Well posedness for the 1D Zakharov-Rubenchik system, Adv. Differential Equations, 14 (2009), 261-288.
|
[16] |
T. Liu and H. Dong, The prolongation structure of the modified nonlinear Schrödinger equation and its initial-boundary value problem on the half line via the Riemann-Hilbert approach, Mathematics, 7 (2019), 170 pp.
doi: 10.3390/math7020170. |
[17] |
Y. Liu, H. Dong and Y. Zhang,
Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.
doi: 10.1007/s13324-018-0209-9. |
[18] |
C. Lu, L. Xie and H. Yang,
Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.
doi: 10.1016/j.camwa.2019.01.022. |
[19] |
Y. Ren, M. Tao, H. Dong and H. Yang, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Difference Equ., 13 (2019), 9 pp.
doi: 10.1186/s13662-019-1952-4. |
[20] |
W. G. Rui,
Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2667-2678.
doi: 10.1016/j.cnsns.2013.01.020. |
[21] |
F. Oliveira,
Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Phys. D, 175 (2003), 220-240.
doi: 10.1016/S0167-2789(02)00722-4. |
[22] |
F. Oliveira,
Adiabatic limit of the Zakharov-Rubenchik Equation, Reports Math. Phys., 61 (2008), 13-27.
doi: 10.1016/S0034-4877(08)00006-2. |
[23] |
G. Ponce and J. C. Saut,
Well-posedness for the Benney-Roskes/Zakharov-Rubenchik system, Disc. Contin. Dyn. Syst., 13 (2005), 811-825.
doi: 10.3934/dcds.2005.13.811. |
[24] |
Y. Wang, C. Dai, L. Wu and J. Zhang,
Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Soliton Fractals, 32 (2007), 1208-1214.
doi: 10.1016/j.chaos.2005.11.071. |
[25] |
V. E. Zakharov, Collapse of Langmuir Waves, Soviet Physics-JETP, 35 (1972), 908-914. Google Scholar |
[26] |
Y. Zhang, H. H. Dong, X. E. Zhang and H. W. Yang,
Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Compu. Math. Appl., 73 (2017), 246-252.
doi: 10.1016/j.camwa.2016.11.009. |
[27] |
L. Zhang and C. M. Khalique,
Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.
doi: 10.3934/dcdss.2018048. |
[28] |
L. Zhang, Y. Wang, C. M. Khlique and Y. Bai,
Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 8 (2018), 1938-1958.
|
[29] |
J. Zhang, L. Zhang and Y. Bai,
Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.
doi: 10.3390/math7050432. |
[30] |
H. Zhao and W. Ma,
Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.
doi: 10.1016/j.camwa.2017.06.034. |
[31] |
Q. L. Zhao and X. Y. Li,
A Bargmann system and the involutive solutions associated with a new 4-Order Lattice hierarchy, Anal. Math Phys., 6 (2016), 237-254.
doi: 10.1007/s13324-015-0116-2. |
[32] |
X. X. Zheng, Y. D. Shang and X. M. Peng,
Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623-2633.
doi: 10.1002/mma.4187. |


[1] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[2] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[3] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[4] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[5] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[6] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[7] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[8] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[9] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[10] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[11] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[12] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[13] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[14] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[15] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[16] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[17] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[18] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[19] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[20] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]