[1]
|
D. Acemoglu, Introduction to Modern Economic Growth (Levine's Bibliography), Department of Economics, UCLA, 2007.
|
[2]
|
S. C. Anco and G. Bluman, Integrating factors and first integrals for ordinary differential equation, European J. Appl. Math., 9 (1998), 245-259.
doi: 10.1017/S0956792598003477.
|
[3]
|
R. J. Barro and X. Sala-i-Martin, Economic Growth, Cambridge, The MIT press, 2004.
|
[4]
|
G. Bauman, Symmetry analysis of differential equations using MathLie, J. Math. Sci. (New York), 108 (2002), 1052-1069.
doi: 10.1023/A:1013548607060.
|
[5]
|
R. Bellman, Dynamic Programming, Princeton University Press, Princeton, N. J., 1957.
|
[6]
|
G. W. Bluman and S. C. Anco, Symmetries and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154. Springer-Verlag, New York, 2002.
|
[7]
|
V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, Extended Prelle-Singer method and integrability/solvability of a class of nonlinear $n$th order ordinary differential equations, J. Nonlinear Math. Phys., 12 (2005) 184–201.
doi: 10.2991/jnmp.2005.12.s1.16.
|
[8]
|
A. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comput. Phys. Comm., 176 (2007), 48-61.
doi: 10.1016/j.cpc.2006.08.001.
|
[9]
|
A. C. Chiang, Elements of Dynamic Optimization, Illinois, Waveland Press Inc, 2000.
|
[10]
|
A. C. Chiang and K. Wainwright, Fundamental methods of Mathematical Economics, McGraw Hill 4th Edition, 2005.
|
[11]
|
G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bulletin des Sciences Mathématiques et Astronomiques, 2 (1878), 151-200.
|
[12]
|
F. Diele, C. Marangi and S. Ragni, Exponential Lawson integration for nearly Hamiltonian systems arising in optimal control, Math. Comput. Simulation, 81 (2011), 1057-1067.
doi: 10.1016/j.matcom.2010.10.010.
|
[13]
|
B. U. Haq and I. Naeem, First integrals and analytical solutions of some dynamical systems, Nonlinear Dynamics, 95 (2019), 1747-1765.
doi: 10.1007/s11071-018-4657-4.
|
[14]
|
B. U. Haq and I. Naeem, First integrals and exact solutions of some compartmental disease models, Zeitschrift für Naturforschung A, 74 (2019).
doi: 10.1515/zna-2018-0450.
|
[15]
|
C. G. J. Jacobi, Sul principio dellultimo moltiplicatore, e suo come nuovo principio generale di meccanica, Giornale Arcadico di Scienze Lettere ed Arti, 99 (1844), 129-146.
|
[16]
|
K. S. Mahomed and R. J. Moitsheki, First integrals of generalized Ermakov systems via the Hamiltonian formulation, Internat. J. Modern Phys. B, 30 (2016), 12 pp.
doi: 10.1142/S0217979216400191.
|
[17]
|
R. Mohanasubha, M. Senthilvelan and M. Lakshmanan, On the interconnections between various analytic approaches in coupled first-order nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 213-228.
doi: 10.1016/j.cnsns.2018.02.021.
|
[18]
|
C. Muriel and J. L. Romero, New methods of reduction for ordinary differential equations, IMA J. Appl. Math., 66 (2001), 111-125.
doi: 10.1093/imamat/66.2.111.
|
[19]
|
C. Muriel and J. L. Romero, First integrals, integrating factors and symmetries of second order differential equations, J. Phys. A, 42 (2009), 17 pp.
doi: 10.1088/1751-8113/42/36/365207.
|
[20]
|
C. Muriel and J. L. Romero, $C^{\infty}$ symmetries and reduction of equations without Lie point symmetries, J. Lie Theory, 13 (2003), 167-188.
|
[21]
|
R. Naz and A. Chaudhry, Comparison of Closed-Form Solutions for the Lucas-Uzawa Model via the Partial Hamiltonian Approach and the Classical Approach, Math. Model. Anal., 22 (2017), 464-483.
doi: 10.3846/13926292.2017.1323035.
|
[22]
|
R. Naz and A. Chaudhry, Closed-form solutions of Lucas-Uzawa model with externalities via partial Hamiltonian approach, Comput. Appl. Math., 37 (2018), 5146-5161.
doi: 10.1007/s40314-018-0622-6.
|
[23]
|
R. Naz, F. M. Mahomed and A. Chaudhry, A partial Lagrangian method for dynamical systems, Nonlinear Dynamics, 84 (2016), 1783-1794.
doi: 10.1007/s11071-016-2605-8.
|
[24]
|
R. Naz, The applications of the partial Hamiltonian approach to mechanics and other areas, International Journal of Non-Linear Mechanics, 86 (2016), 1-6.
doi: 10.1016/j.ijnonlinmec.2016.07.009.
|
[25]
|
R. Naz, F. M. Mahomed and A. Chaudhry, A partial Hamiltonian approach for current value Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3600-3610.
doi: 10.1016/j.cnsns.2014.03.023.
|
[26]
|
M. C. Nucci and G. Sanchini, Symmetries, Lagrangians and conservation laws of an Easter island population model, Symmetry, 7 (2015), 1613-1632.
doi: 10.3390/sym7031613.
|
[27]
|
M. C. Nucci, Jacobi last multiplier and Lie symmetries: A novel application of an old relationship, J. Nonlinear Math. Phys., 12 (2005), 284-304.
doi: 10.2991/jnmp.2005.12.2.9.
|
[28]
|
M. K. Nucci, Seeking (and Finding) Lagrangians, Theoret. and Math. Phys., 160 (2009), 1014-1021.
doi: 10.1007/s11232-009-0092-5.
|
[29]
|
M. C. Nucci and P. G. L. Leach, An old method of Jacobi to find Lagrangians, J. Nonlinear Math. Phys., 16 (2009), 431-441.
doi: 10.1142/S1402925109000467.
|
[30]
|
P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993.
|
[31]
|
F. Ramsey, A Mathematical theory of saving, Economic Journal, 38 (1928), 543-559.
doi: 10.2307/2224098.
|