• Previous Article
    Numerical continuation and delay equations: A novel approach for complex models of structured populations
  • DCDS-S Home
  • This Issue
  • Next Article
    Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy
doi: 10.3934/dcdss.2020216

Lagrangian dynamics by nonlocal constants of motion

1. 

Università di Udine, Dipartimento di Scienze Matematiche, Informatiche e Fisiche, via delle Scienze 208, 33100 Udine, Italy

2. 

Università di Verona, Dipartimento di Informatica, strada Le Grazie 15, 37134 Verona, Italy

* Corresponding author: Gaetano Zampieri

Received  January 2019 Revised  June 2019 Published  December 2019

A simple general theorem is used as a tool that generates nonlocal constants of motion for Lagrangian systems. We review some cases where the constants that we find are useful in the study of the systems: the homogeneous potentials of degree $ -2 $, the mechanical systems with viscous fluid resistance and the conservative and dissipative Maxwell-Bloch equations of laser dynamics. We also prove a new result on explosion in the past for mechanical system with hydraulic (quadratic) fluid resistance and bounded potential.

Citation: Gianluca Gorni, Gaetano Zampieri. Lagrangian dynamics by nonlocal constants of motion. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020216
References:
[1]

F. T. Arecchi and R. Meucci, Chaos in Lasers, Scholarpedia, 2008. doi: 10.4249/scholarpedia.7066.  Google Scholar

[2]

F. Calogero, Solutions of the one dimensional $n$-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), 419-436.  doi: 10.1063/1.1665604.  Google Scholar

[3]

G. Gorni and G. Zampieri, Revisiting Noether's theorem on constants of motion, J. Nonlinear Math. Phys., 21 (2014), 43-73.  doi: 10.1080/14029251.2014.894720.  Google Scholar

[4]

G. Gorni and G. Zampieri, Nonlocal variational constants of motion in dissipative dynamics, Differential Integral Equations, 30 (2017), 631-640.   Google Scholar

[5]

G. Gorni and G. Zampieri, Nonstandard separation of variables for the Maxwell-Bloch conservative system, São Paulo J. Math. Sci., 12 (2018), 146-169.  doi: 10.1007/s40863-017-0079-3.  Google Scholar

[6]

G. Gorni and G. Zampieri, Nonlocal and nonvariational extensions of Killing- type equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 675-689.  doi: 10.3934/dcdss.2018042.  Google Scholar

[7]

G. GorniS. Residori and G. Zampieri, A quasi separable dissipative Maxwell- Bloch system for laser dynamics, Qual. Theory Dyn. Syst., 18 (2019), 371-381.  doi: 10.1007/s12346-018-0290-3.  Google Scholar

[8]

P. G. L. Leach, Lie symmetries and Noether symmetries, Appl. Anal. Discrete Math., 6 (2012), 238-246.  doi: 10.2298/AADM120625015L.  Google Scholar

[9]

R. Leone and T. Gourieux, Classical Noether theory with application to the linearly damped particle, European Journal of Physics, 36 (2015), 20 pp. doi: 10.1088/0143-0807/36/6/065022.  Google Scholar

show all references

References:
[1]

F. T. Arecchi and R. Meucci, Chaos in Lasers, Scholarpedia, 2008. doi: 10.4249/scholarpedia.7066.  Google Scholar

[2]

F. Calogero, Solutions of the one dimensional $n$-body problems with quadratic and/or inversely quadratic pair potentials, J. Mathematical Phys., 12 (1971), 419-436.  doi: 10.1063/1.1665604.  Google Scholar

[3]

G. Gorni and G. Zampieri, Revisiting Noether's theorem on constants of motion, J. Nonlinear Math. Phys., 21 (2014), 43-73.  doi: 10.1080/14029251.2014.894720.  Google Scholar

[4]

G. Gorni and G. Zampieri, Nonlocal variational constants of motion in dissipative dynamics, Differential Integral Equations, 30 (2017), 631-640.   Google Scholar

[5]

G. Gorni and G. Zampieri, Nonstandard separation of variables for the Maxwell-Bloch conservative system, São Paulo J. Math. Sci., 12 (2018), 146-169.  doi: 10.1007/s40863-017-0079-3.  Google Scholar

[6]

G. Gorni and G. Zampieri, Nonlocal and nonvariational extensions of Killing- type equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 675-689.  doi: 10.3934/dcdss.2018042.  Google Scholar

[7]

G. GorniS. Residori and G. Zampieri, A quasi separable dissipative Maxwell- Bloch system for laser dynamics, Qual. Theory Dyn. Syst., 18 (2019), 371-381.  doi: 10.1007/s12346-018-0290-3.  Google Scholar

[8]

P. G. L. Leach, Lie symmetries and Noether symmetries, Appl. Anal. Discrete Math., 6 (2012), 238-246.  doi: 10.2298/AADM120625015L.  Google Scholar

[9]

R. Leone and T. Gourieux, Classical Noether theory with application to the linearly damped particle, European Journal of Physics, 36 (2015), 20 pp. doi: 10.1088/0143-0807/36/6/065022.  Google Scholar

Figure 1.  Generic (periodic) and homoclinic orbits of $ (\dot q_3, \ddot q_3) $ in the conservative case of the Maxwell-Bloch equations (Subsec. 6.1); the dashed lines and the dots are not visited by solutions, but they are level sets or stationary points of the potential function associated with equation (35)
Figure 2.  Projection of forward orbits on the $ q_1, q_2 $ plane in two dissipative cases with $ c = 2a $ of the Maxwell-Bloch equations (Subsec. 6.2), computed numerically. On the left with $ g^2k\le ab $ the solution goes to the origin; on the right with $ g^2k> ab $ the orbit converges to a point on the (dashed) circle with radius $ r_\infty $, as in equation (44)
[1]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[2]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[3]

Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95

[4]

Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193

[5]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[6]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[7]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[8]

Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli. Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences & Engineering, 2005, 2 (3) : 445-460. doi: 10.3934/mbe.2005.2.445

[9]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[10]

D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure & Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197

[11]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Existence of smooth solutions to coupled chemotaxis-fluid equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2271-2297. doi: 10.3934/dcds.2013.33.2271

[12]

Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553

[13]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[14]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[15]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[16]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[17]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[18]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[19]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[20]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]