doi: 10.3934/dcdss.2020217

Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations

1. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

2. 

African Institute for Mathematical Sciences, Muizenberg, Cape Town, South Africa

3. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

4. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

* Corresponding author: Yixia Shi

Received  February 2019 Revised  June 2019 Published  December 2019

Fund Project: Part of this work was done during L. Zhang's research visit to African Institute for Mathematical Sciences South Africa

In this paper, we consider the traveling wave solutions of the one-dimensional Serre-Green-Naghdi (SGN) equations which are proposed to model dispersive nonlinear long water waves in a one-layer flow over flat bottom. We decouple the traveling wave system of SGN equations into two ordinary differential equations. By studying the bifurcations and phase portraits of each bifurcation set of one equation, we obtain the exact traveling wave solutions of SGN equations for the variable $ u(x, t) $ which represents average horizontal velocity of water wave. For the compacted orbits intersecting with the singular line in phase plane, we obtained two families of solutions: a family of smooth traveling wave solutions including periodic wave solutions and solitary wave solutions, and a family of compacted singular solutions which have continuous first-order derivative but discontinuous second-order derivative.

Citation: Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020217
References:
[1]

R. AitbayevP. W. Bates and H. Lu, Mathematical studies of Poisson-Nernst-Planck model for membrane channels: Finite ion size effects without electroneutrality boundary conditions, J. Comp. Appl. Math., 362 (2019), 510-527.  doi: 10.1016/j.cam.2018.10.037.  Google Scholar

[2]

P. BonnetonE. BarthelemyF. ChazelR. CienfuegosD. LannesF. Marche and M. Tissier, Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes, Eur. J. Mech. B Fluids, 30 (2011), 589-597.  doi: 10.1016/j.euromechflu.2011.02.005.  Google Scholar

[3]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971. Google Scholar

[4]

S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer-Verlag, New York, 1981. Google Scholar

[5]

D. Clamond, D. Dutykh and A. Galligo, Algebraic method for constructing singular steady solitary waves: A case study, Proc. A., 472 (2016), 18 pp. doi: 10.1098/rspa.2016.0194.  Google Scholar

[6]

D. ClamondD. Dutykh and D. Mitsotakis, Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 245-257.  doi: 10.1016/j.cnsns.2016.10.009.  Google Scholar

[7]

S. DengB. Guo and T. Wang, Some traveling wave solitons of the Green-Naghdi system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 575-585.  doi: 10.1142/S0218127411028623.  Google Scholar

[8]

D. DutykhM. Hoefer and D. Mitsotakis, Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations, Theor. Comput. Fluid Dyn., 32 (2018), 371-397.  doi: 10.1007/s00162-018-0455-3.  Google Scholar

[9]

N Favrie and S Gavrilyuk, A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves, Nonlinearity, 30 (2017), 2718-2736.  doi: 10.1088/1361-6544/aa712d.  Google Scholar

[10]

A. E. GreenN. Laws and P. M. Naghdi, On the theory of water waves, Proc. Roy. Soc. London Ser. A, 338 (1974), 43-55.  doi: 10.1098/rspa.1974.0072.  Google Scholar

[11]

A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.  doi: 10.1017/S0022112076002425.  Google Scholar

[12]

M. A. HanL. J. ZhangY. Wang and C. M. Khalique, The effects of the sigular lines on the traveling wave solutios of modified dispersive water wave equation, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.  doi: 10.1016/j.nonrwa.2018.10.012.  Google Scholar

[13]

C. H. HeY. N. Tang and J. L. Ma, New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.  doi: 10.1016/j.camwa.2018.08.012.  Google Scholar

[14]

H. KalischZ. Khorsand and D. Mitsotakis, Mechanical balance laws for fully nonlinear and weakly dispersive water waves, Phys. D, 333 (2016), 243-253.  doi: 10.1016/j.physd.2016.03.001.  Google Scholar

[15]

D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for effcient 2D simulations, J. Comput. Phys., 282 (2015), 238-268.  doi: 10.1016/j.jcp.2014.11.016.  Google Scholar

[16] J. Li, Singular nonlinear travelling wave equations: Bifurcations and exact solutions, Science Press, 2013.   Google Scholar
[17]

F. S. Li and G. W. Du, General Energy Decay for a Degenerate Viscoelastic Petrovsky-Type Plate Equation with Boundary Feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.   Google Scholar

[18]

F. S. Li and Q. Y. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.  doi: 10.1016/j.amc.2015.11.018.  Google Scholar

[19]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 385 (2012), 1005-1014.  doi: 10.1016/j.jmaa.2011.07.018.  Google Scholar

[20]

X. Y. Li and Q. L. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys. 121 (2017), 123–137. doi: 10.1016/j.geomphys.2017.07.010.  Google Scholar

[21]

Y. LiuH. H. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.  doi: 10.1007/s13324-018-0209-9.  Google Scholar

[22]

H. Liu and L. Zhang, Symmetry reductions and exact solutions to systems of nonlinear partial differential equations, Phys. Scr., 94 (2019), 015202. Google Scholar

[23]

C. N. LuL. Y. Xie and H. W. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3+1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.  doi: 10.1016/j.camwa.2019.01.022.  Google Scholar

[24]

S. Popinet, A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations, J. Compu. Phys., 302 (2015), 336-358.  doi: 10.1016/j.jcp.2015.09.009.  Google Scholar

[25]

L. J. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[26]

D. MitsotakisD. DutykhA. Assylbekuly and D. Zhakebayev, On weakly singular and fully nonlinear travelling shallow capillarygravity waves in the critical regime, Phys. Lett. A, 381 (2017), 1719-1726.  doi: 10.1016/j.physleta.2017.03.041.  Google Scholar

[27]

L. J. ZhangY. WangC. M. Khalique and Y. Z. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Comput., 8 (2018), 1938-1958.   Google Scholar

[28]

J. M. ZhangL. J. Zhang and Y. Z. Bai, Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.  doi: 10.3390/math7050432.  Google Scholar

[29]

H. Q. Zhao and W. X. Ma, Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.  doi: 10.1016/j.camwa.2017.06.034.  Google Scholar

[30]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Methods Appl. Sci., 40 (2017), 2623-2633.  doi: 10.1002/mma.4187.  Google Scholar

show all references

References:
[1]

R. AitbayevP. W. Bates and H. Lu, Mathematical studies of Poisson-Nernst-Planck model for membrane channels: Finite ion size effects without electroneutrality boundary conditions, J. Comp. Appl. Math., 362 (2019), 510-527.  doi: 10.1016/j.cam.2018.10.037.  Google Scholar

[2]

P. BonnetonE. BarthelemyF. ChazelR. CienfuegosD. LannesF. Marche and M. Tissier, Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes, Eur. J. Mech. B Fluids, 30 (2011), 589-597.  doi: 10.1016/j.euromechflu.2011.02.005.  Google Scholar

[3]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971. Google Scholar

[4]

S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer-Verlag, New York, 1981. Google Scholar

[5]

D. Clamond, D. Dutykh and A. Galligo, Algebraic method for constructing singular steady solitary waves: A case study, Proc. A., 472 (2016), 18 pp. doi: 10.1098/rspa.2016.0194.  Google Scholar

[6]

D. ClamondD. Dutykh and D. Mitsotakis, Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 245-257.  doi: 10.1016/j.cnsns.2016.10.009.  Google Scholar

[7]

S. DengB. Guo and T. Wang, Some traveling wave solitons of the Green-Naghdi system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 575-585.  doi: 10.1142/S0218127411028623.  Google Scholar

[8]

D. DutykhM. Hoefer and D. Mitsotakis, Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations, Theor. Comput. Fluid Dyn., 32 (2018), 371-397.  doi: 10.1007/s00162-018-0455-3.  Google Scholar

[9]

N Favrie and S Gavrilyuk, A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves, Nonlinearity, 30 (2017), 2718-2736.  doi: 10.1088/1361-6544/aa712d.  Google Scholar

[10]

A. E. GreenN. Laws and P. M. Naghdi, On the theory of water waves, Proc. Roy. Soc. London Ser. A, 338 (1974), 43-55.  doi: 10.1098/rspa.1974.0072.  Google Scholar

[11]

A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.  doi: 10.1017/S0022112076002425.  Google Scholar

[12]

M. A. HanL. J. ZhangY. Wang and C. M. Khalique, The effects of the sigular lines on the traveling wave solutios of modified dispersive water wave equation, Nonlinear Anal. Real World Appl., 47 (2019), 236-250.  doi: 10.1016/j.nonrwa.2018.10.012.  Google Scholar

[13]

C. H. HeY. N. Tang and J. L. Ma, New interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation, Compu. Math. Appl., 76 (2018), 2141-2147.  doi: 10.1016/j.camwa.2018.08.012.  Google Scholar

[14]

H. KalischZ. Khorsand and D. Mitsotakis, Mechanical balance laws for fully nonlinear and weakly dispersive water waves, Phys. D, 333 (2016), 243-253.  doi: 10.1016/j.physd.2016.03.001.  Google Scholar

[15]

D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for effcient 2D simulations, J. Comput. Phys., 282 (2015), 238-268.  doi: 10.1016/j.jcp.2014.11.016.  Google Scholar

[16] J. Li, Singular nonlinear travelling wave equations: Bifurcations and exact solutions, Science Press, 2013.   Google Scholar
[17]

F. S. Li and G. W. Du, General Energy Decay for a Degenerate Viscoelastic Petrovsky-Type Plate Equation with Boundary Feedback, J. Appl. Anal. Compu., 8 (2018), 390-401.   Google Scholar

[18]

F. S. Li and Q. Y. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Compu., 274 (2016), 383-392.  doi: 10.1016/j.amc.2015.11.018.  Google Scholar

[19]

F. S. Li and J. L. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 385 (2012), 1005-1014.  doi: 10.1016/j.jmaa.2011.07.018.  Google Scholar

[20]

X. Y. Li and Q. L. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys. 121 (2017), 123–137. doi: 10.1016/j.geomphys.2017.07.010.  Google Scholar

[21]

Y. LiuH. H. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys., 9 (2019), 465-481.  doi: 10.1007/s13324-018-0209-9.  Google Scholar

[22]

H. Liu and L. Zhang, Symmetry reductions and exact solutions to systems of nonlinear partial differential equations, Phys. Scr., 94 (2019), 015202. Google Scholar

[23]

C. N. LuL. Y. Xie and H. W. Yang, Analysis of Lie symmetries with conservation laws and solutions for the generalized (3+1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation, Compu. Math. Appl., 77 (2019), 3154-3171.  doi: 10.1016/j.camwa.2019.01.022.  Google Scholar

[24]

S. Popinet, A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations, J. Compu. Phys., 302 (2015), 336-358.  doi: 10.1016/j.jcp.2015.09.009.  Google Scholar

[25]

L. J. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[26]

D. MitsotakisD. DutykhA. Assylbekuly and D. Zhakebayev, On weakly singular and fully nonlinear travelling shallow capillarygravity waves in the critical regime, Phys. Lett. A, 381 (2017), 1719-1726.  doi: 10.1016/j.physleta.2017.03.041.  Google Scholar

[27]

L. J. ZhangY. WangC. M. Khalique and Y. Z. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Comput., 8 (2018), 1938-1958.   Google Scholar

[28]

J. M. ZhangL. J. Zhang and Y. Z. Bai, Stability and bifurcation analysis on a predator prey system with the weak allee effect, Mathematics, 7 (2019), 1-15.  doi: 10.3390/math7050432.  Google Scholar

[29]

H. Q. Zhao and W. X. Ma, Mixed lumpkink solutions to the KP equation, Compu. Math. Appl., 74 (2017), 1399-1405.  doi: 10.1016/j.camwa.2017.06.034.  Google Scholar

[30]

X. X. ZhengY. D. Shang and X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Methods Appl. Sci., 40 (2017), 2623-2633.  doi: 10.1002/mma.4187.  Google Scholar

Figure 1.  The phase portraits of system (9) in each bifurcation set for $ A>0 $. (1) $ c>\frac{B}{A}-\frac{3}{2}\sqrt{Ag} $; (2) $ c = \frac{B}{A}-\frac{3}{2}\sqrt{Ag} $; (3) $ c<\frac{B}{A}-\frac{3}{2}\sqrt{Ag} $
Figure 2.  Phase orbit of (12) and the corresponding bounded traveling wave solutions. (1) a compact orbit of (12) intersecting with the singular line; (2) a smooth periodic traveling wave solution; (3) compacton
Figure 3.  Phase orbit of (12) and the corresponding bounded traveling wave solutions. (1) a compact orbit of (12) intersecting with the singular line; (2) a smooth periodic traveling wave solution; (3) compacton
[1]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

[2]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[3]

Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123

[4]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[5]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[6]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[7]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[8]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[9]

Roger Lui, Hirokazu Ninomiya. Traveling wave solutions for a bacteria system with density-suppressed motility. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 931-940. doi: 10.3934/dcdsb.2018213

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[12]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[13]

Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841

[14]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[15]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[16]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[17]

Lijun Zhang, Peiying Yuan, Jingli Fu, Chaudry Masood Khalique. Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020214

[18]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

[19]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[20]

Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (21)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]