[1]
|
S. C. Anco and G. W. Bluman, Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869.
|
[2]
|
E. D. Avdonina, N. H. Ibragimov and R. Khamitova, Exact solutions of gasdynamic equaitons obtained by the method of conservation laws, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 2359-2366.
doi: 10.1016/j.cnsns.2012.12.023.
|
[3]
|
G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applications mathematics series, 154. Springer, 2002.
|
[4]
|
G. W. Bluman, Te muerchaolu and S. C. Anco, New conservation laws obtained directly from symmetry action on a known conservation law, J. Math. Anal. Appl., 322 (2006), 233-250.
doi: 10.1016/j.jmaa.2005.08.092.
|
[5]
|
I. L. Freire, Conservation laws for self-adjoint first order evolution equation, J. Nonlin. Math. Phys., 18 (2011), 279-290.
doi: 10.1142/S1402925111001453.
|
[6]
|
I. L. Freire, New conservation laws for inviscid Burgers equation, Comp. Appl. Math., 31 (2012), 559-567.
doi: 10.1590/S1807-03022012000300007.
|
[7]
|
I. L. Freire and J. C. S. Sampaio, On the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 350-360.
doi: 10.1016/j.cnsns.2013.06.010.
|
[8]
|
N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311-328.
doi: 10.1016/j.jmaa.2006.10.078.
|
[9]
|
N. H. Ibragimov, Integrating factors, adjoint equations and Lagrangians, J. Math. Anal. Appl., 318 (2006), 742-757.
doi: 10.1016/j.jmaa.2005.11.012.
|
[10]
|
N. H.Ibragimov, Method of conservation laws for constructing solutions to systems of PDEs, Disc. Nonlinearity compl., 1 (2012), 353-362.
|
[11]
|
N. H. Ibragimov and T. Kolsrud, Lagrangian approach to evolution equations: Symmetries and conservation laws, Nonlinear Dyn., 36 (2004), 29-40.
doi: 10.1023/B:NODY.0000034644.82259.1f.
|
[12]
|
A. H. Kara and F. M. Mahomed, Relationship between symmetries and conservation laws, Internat. J. Theoret. Phys., 39 (2000), 23-40.
doi: 10.1023/A:1003686831523.
|
[13]
|
A. H. Kara and F. M. Mahomed, Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dyn., 45 (2006), 367-383.
doi: 10.1007/s11071-005-9013-9.
|
[14]
|
A. Mishra and R. Kumar, Exact solutions of variable coefficient nonlinear diffusion-reaction equations with a nonliear convective term, Phys. Lett. A, 374 (2010), 2921-2924.
doi: 10.1016/j.physleta.2010.03.039.
|
[15]
|
B. Muatjetjeja and C. M. Khalique, First integrals for a generalized coupled Lane-Emden system, Nonlinear Anal. Real World Appl., 12 (2011), 1202-1212.
doi: 10.1016/j.nonrwa.2010.09.013.
|
[16]
|
J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1993.
|
[17]
|
P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
|
[18]
|
R. Popovych, Direct methods of construction of conservation laws, Physics AUC, 16 (2006), 81-947.
|
[19]
|
J. C. S. Sampaio and I. L. Freire, Nonlinear self-adjoint classification of a Burgers-KdV family of equations, Abs. Appl. Anal., 2014 (2014), 1-7.
doi: 10.1155/2014/804703.
|
[20]
|
H. Steudel, Noether's theorem and the conservation laws of the Korteweg-de Vries equation, Ann. Physik, 32 (1975), 445-455.
doi: 10.1002/andp.19754870605.
|