[1]
|
V. R. Ambati and O. Bokhove, Space-time discontinuous Galerkin finite element method for shallow water flows, J. Comput. Appl. Math., 204 (2007), 452-462.
doi: 10.1016/j.cam.2006.01.047.
|
[2]
|
C. Canuto, M. Y. Hussaini, A. Z. Quarteroni and T. Zang, Option Pricing: Mathematical Models and Computation, Springer, 1993.
|
[3]
|
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation, Springer, Berlin, 2007.
|
[4]
|
C. Chen, A. Karageorghis and Y. Smyrlis, The Method of Fundamental Solutions: A Meshless Method, Dynamic Publishers Atlanta, 2008.
|
[5]
|
A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathematics and its Applications, 32. North-Holland Publishing Co., Amsterdam, 2003.
|
[6]
|
J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.
doi: 10.1016/0304-405X(79)90015-1.
|
[7]
|
G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, With 1 CD-ROM (Windows, Macintosh and UNIX), Interdisciplinary Mathematical Sciences, 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
doi: 10.1142/6437.
|
[8]
|
G. E. Fasshauer and M. McCourt, Kernel-Based Approximation Methods Using Matlab, World Scientific pub. Co, 2015.
|
[9]
|
G. E. Fasshauer and J. G. Zhang, On choosing optimal shape parameters for RBF approximation, Numerical Algorithms, 45 (2007), 345-368.
doi: 10.1007/s11075-007-9072-8.
|
[10]
|
R. Geske and K. Shastri, Valuation by approximation: A comparison of alternative option valuation techniques, Journal of Financial and Quantitative Analysis, 20 (1985), 45-71.
doi: 10.2307/2330677.
|
[11]
|
M. Hamaidi, A. Naji and A. Charafi, Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations, Eng. Anal. Bound. Elem., 67 (2016), 152-163.
doi: 10.1016/j.enganabound.2016.03.009.
|
[12]
|
J. Hull and A. White, The use of the control variate technique in option pricing, Journal of Financial and Quantitative analysis, 23 (1988), 237-251.
doi: 10.2307/2331065.
|
[13]
|
M. K. Kadalbajoo, L. P. Tripathi and A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black-Scholes equation, Math. Comput. Modelling, 55 (2012), 1483-1505.
doi: 10.1016/j.mcm.2011.10.040.
|
[14]
|
C. M. Klaija, J. J. W. van der Vegta and H. van der Venb, Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations, J. Comput. Phys., 217 (2006), 589-611.
doi: 10.1016/j.jcp.2006.01.018.
|
[15]
|
M. Li, W. Chen and C. S. Chen, The localized RBFs collocation methods for solving high dimensional PDEs, Eng. Anal. Bound. Elem., 37 (2013), 1300-1304.
doi: 10.1016/j.enganabound.2013.06.001.
|
[16]
|
Z. Li and X. Z. Mao, Global multiquadric collocation method for groundwater contaminant source identification, Environmental modelling & software, 26 (2011), 1611-1621.
doi: 10.1016/j.envsoft.2011.07.010.
|
[17]
|
Z. Li and X. Z. Mao, Global space-time multiquadric method for inverse heat conduction problem, Internat. J. Numer. Methods Engrg., 85 (2011), 355-379.
doi: 10.1002/nme.2975.
|
[18]
|
F. Moukalled, L. Mangani and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and its Applications, 113. Springer, Cham, 2016.
doi: 10.1007/978-3-319-16874-6.
|
[19]
|
H. Netuzhylov, A Space-Time Meshfree Collocation Method for Coupled Problems on Irregularly-Shaped Domains, Ph.D thesis, Zugl., Braunschweig, Techn. Univ., Diss., 2008.
|
[20]
|
R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777-797.
doi: 10.1016/j.camwa.2015.02.018.
|
[21]
|
S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, 39. Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-540-68093-2.
|
[22]
|
J. J.Sudirham, J. J. W. van der Vegt and R. M. J. van Damme, Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains, Appl. Numer. Math., 56 (2006), 1491-1518.
doi: 10.1016/j.apnum.2005.11.003.
|
[23]
|
T. E. Tezduyar, S. Sathe, R. Keedy and K. Stein, Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 195 (2006), 2002-2027.
doi: 10.1016/j.cma.2004.09.014.
|
[24]
|
C. Turchetti, M. Conti, P. Crippa and S. Orcioni, On the approximation of stochastic processes by approximate identity neural networks, IEEE Transactions on Neural Networks, 9 (1998), 1069-1085.
doi: 10.1109/72.728353.
|
[25]
|
C. Turchetti, P. Crippa, M. Pirani and G. Biagetti, Representation of nonlinear random transformations by non-Gaussian stochastic neural networks, IEEE transactions on neural networks, 19 (2008), 1033-1060.
doi: 10.1109/TNN.2007.2000055.
|
[26]
|
M. Uddin, H. Ali and A. Ali, Kernel-based local meshless method for solving multi-dimensional wave equations in irregular domain, CMES-Computer Modeling In Engineering & Sciences, 107 (2015), 463-479.
|
[27]
|
M. Uddin and H. Ali, The space time kernel based numerical method for Burgers equations, Mathematics, 6 (2018), 212-222.
doi: 10.3390/math6100212.
|
[28]
|
M. Uddin, K. Kamran, M. Usman and A. Ali, On the Laplace-transformed-based local meshless method for fractional-order diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 19 (2018), 221-225.
doi: 10.1080/15502287.2018.1472150.
|
[29]
|
B. M. Vaganan and E. E. Priya, Generalized Cole-Hopf transformations for generalized Burgers equations, Pramana, 85 (2015), 861-867.
doi: 10.1007/s12043-015-1107-4.
|
[30]
|
D. L. Young, C. C. Tsai, K. Murugesana, C. M. Fan and C. W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Elements, 28 (2004), 1463-1473.
doi: 10.1016/j.enganabound.2004.07.003.
|
[31]
|
H. Zhang, F. Liu, I. Turner and Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772-1783.
doi: 10.1016/j.camwa.2016.02.007.
|