October  2020, 13(10): 2905-2915. doi: 10.3934/dcdss.2020221

Space-time kernel based numerical method for generalized Black-Scholes equation

Department of Basic Sciences, University of Engineering and Technology Peshawar, Pakistan

* Corresponding author: Marjan Uddin

Received  February 2019 Revised  June 2019 Published  December 2019

Fund Project: This work is supported by HEC Pakistan

In approximating time-dependent partial differential equations, major error always occurs in the time derivatives as compared to the spatial derivatives. In the present work the time and the spatial derivatives are both approximated using time-space radial kernels. The proposed numerical scheme avoids the time stepping procedures and produced sparse differentiation matrices. The stability and accuracy of the proposed numerical scheme is tested for the generalized Black-Scholes equation.

Citation: Marjan Uddin, Hazrat Ali. Space-time kernel based numerical method for generalized Black-Scholes equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2905-2915. doi: 10.3934/dcdss.2020221
References:
[1]

V. R. Ambati and O. Bokhove, Space-time discontinuous Galerkin finite element method for shallow water flows, J. Comput. Appl. Math., 204 (2007), 452-462.  doi: 10.1016/j.cam.2006.01.047.  Google Scholar

[2]

C. Canuto, M. Y. Hussaini, A. Z. Quarteroni and T. Zang, Option Pricing: Mathematical Models and Computation, Springer, 1993. Google Scholar

[3]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation, Springer, Berlin, 2007.  Google Scholar

[4]

C. Chen, A. Karageorghis and Y. Smyrlis, The Method of Fundamental Solutions: A Meshless Method, Dynamic Publishers Atlanta, 2008. Google Scholar

[5]

A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathematics and its Applications, 32. North-Holland Publishing Co., Amsterdam, 2003.  Google Scholar

[6]

J. C. CoxS. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[7]

G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, With 1 CD-ROM (Windows, Macintosh and UNIX), Interdisciplinary Mathematical Sciences, 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. doi: 10.1142/6437.  Google Scholar

[8]

G. E. Fasshauer and M. McCourt, Kernel-Based Approximation Methods Using Matlab, World Scientific pub. Co, 2015. Google Scholar

[9]

G. E. Fasshauer and J. G. Zhang, On choosing optimal shape parameters for RBF approximation, Numerical Algorithms, 45 (2007), 345-368.  doi: 10.1007/s11075-007-9072-8.  Google Scholar

[10]

R. Geske and K. Shastri, Valuation by approximation: A comparison of alternative option valuation techniques, Journal of Financial and Quantitative Analysis, 20 (1985), 45-71.  doi: 10.2307/2330677.  Google Scholar

[11]

M. HamaidiA. Naji and A. Charafi, Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations, Eng. Anal. Bound. Elem., 67 (2016), 152-163.  doi: 10.1016/j.enganabound.2016.03.009.  Google Scholar

[12]

J. Hull and A. White, The use of the control variate technique in option pricing, Journal of Financial and Quantitative analysis, 23 (1988), 237-251.  doi: 10.2307/2331065.  Google Scholar

[13]

M. K. KadalbajooL. P. Tripathi and A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black-Scholes equation, Math. Comput. Modelling, 55 (2012), 1483-1505.  doi: 10.1016/j.mcm.2011.10.040.  Google Scholar

[14]

C. M. KlaijaJ. J. W. van der Vegta and H. van der Venb, Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations, J. Comput. Phys., 217 (2006), 589-611.  doi: 10.1016/j.jcp.2006.01.018.  Google Scholar

[15]

M. LiW. Chen and C. S. Chen, The localized RBFs collocation methods for solving high dimensional PDEs, Eng. Anal. Bound. Elem., 37 (2013), 1300-1304.  doi: 10.1016/j.enganabound.2013.06.001.  Google Scholar

[16]

Z. Li and X. Z. Mao, Global multiquadric collocation method for groundwater contaminant source identification, Environmental modelling & software, 26 (2011), 1611-1621.  doi: 10.1016/j.envsoft.2011.07.010.  Google Scholar

[17]

Z. Li and X. Z. Mao, Global space-time multiquadric method for inverse heat conduction problem, Internat. J. Numer. Methods Engrg., 85 (2011), 355-379.  doi: 10.1002/nme.2975.  Google Scholar

[18]

F. Moukalled, L. Mangani and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and its Applications, 113. Springer, Cham, 2016. doi: 10.1007/978-3-319-16874-6.  Google Scholar

[19]

H. Netuzhylov, A Space-Time Meshfree Collocation Method for Coupled Problems on Irregularly-Shaped Domains, Ph.D thesis, Zugl., Braunschweig, Techn. Univ., Diss., 2008. Google Scholar

[20]

R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777-797.  doi: 10.1016/j.camwa.2015.02.018.  Google Scholar

[21]

S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, 39. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-68093-2.  Google Scholar

[22]

J. J.SudirhamJ. J. W. van der Vegt and R. M. J. van Damme, Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains, Appl. Numer. Math., 56 (2006), 1491-1518.  doi: 10.1016/j.apnum.2005.11.003.  Google Scholar

[23]

T. E. TezduyarS. SatheR. Keedy and K. Stein, Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 195 (2006), 2002-2027.  doi: 10.1016/j.cma.2004.09.014.  Google Scholar

[24]

C. TurchettiM. ContiP. Crippa and S. Orcioni, On the approximation of stochastic processes by approximate identity neural networks, IEEE Transactions on Neural Networks, 9 (1998), 1069-1085.  doi: 10.1109/72.728353.  Google Scholar

[25]

C. TurchettiP. CrippaM. Pirani and G. Biagetti, Representation of nonlinear random transformations by non-Gaussian stochastic neural networks, IEEE transactions on neural networks, 19 (2008), 1033-1060.  doi: 10.1109/TNN.2007.2000055.  Google Scholar

[26]

M. UddinH. Ali and A. Ali, Kernel-based local meshless method for solving multi-dimensional wave equations in irregular domain, CMES-Computer Modeling In Engineering & Sciences, 107 (2015), 463-479.   Google Scholar

[27]

M. Uddin and H. Ali, The space time kernel based numerical method for Burgers equations, Mathematics, 6 (2018), 212-222.  doi: 10.3390/math6100212.  Google Scholar

[28]

M. UddinK. KamranM. Usman and A. Ali, On the Laplace-transformed-based local meshless method for fractional-order diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 19 (2018), 221-225.  doi: 10.1080/15502287.2018.1472150.  Google Scholar

[29]

B. M. Vaganan and E. E. Priya, Generalized Cole-Hopf transformations for generalized Burgers equations, Pramana, 85 (2015), 861-867.  doi: 10.1007/s12043-015-1107-4.  Google Scholar

[30]

D. L. YoungC. C. TsaiK. MurugesanaC. M. Fan and C. W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Elements, 28 (2004), 1463-1473.  doi: 10.1016/j.enganabound.2004.07.003.  Google Scholar

[31]

H. ZhangF. LiuI. Turner and Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772-1783.  doi: 10.1016/j.camwa.2016.02.007.  Google Scholar

show all references

References:
[1]

V. R. Ambati and O. Bokhove, Space-time discontinuous Galerkin finite element method for shallow water flows, J. Comput. Appl. Math., 204 (2007), 452-462.  doi: 10.1016/j.cam.2006.01.047.  Google Scholar

[2]

C. Canuto, M. Y. Hussaini, A. Z. Quarteroni and T. Zang, Option Pricing: Mathematical Models and Computation, Springer, 1993. Google Scholar

[3]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation, Springer, Berlin, 2007.  Google Scholar

[4]

C. Chen, A. Karageorghis and Y. Smyrlis, The Method of Fundamental Solutions: A Meshless Method, Dynamic Publishers Atlanta, 2008. Google Scholar

[5]

A. Cohen, Numerical Analysis of Wavelet Methods, Studies in Mathematics and its Applications, 32. North-Holland Publishing Co., Amsterdam, 2003.  Google Scholar

[6]

J. C. CoxS. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[7]

G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, With 1 CD-ROM (Windows, Macintosh and UNIX), Interdisciplinary Mathematical Sciences, 6. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. doi: 10.1142/6437.  Google Scholar

[8]

G. E. Fasshauer and M. McCourt, Kernel-Based Approximation Methods Using Matlab, World Scientific pub. Co, 2015. Google Scholar

[9]

G. E. Fasshauer and J. G. Zhang, On choosing optimal shape parameters for RBF approximation, Numerical Algorithms, 45 (2007), 345-368.  doi: 10.1007/s11075-007-9072-8.  Google Scholar

[10]

R. Geske and K. Shastri, Valuation by approximation: A comparison of alternative option valuation techniques, Journal of Financial and Quantitative Analysis, 20 (1985), 45-71.  doi: 10.2307/2330677.  Google Scholar

[11]

M. HamaidiA. Naji and A. Charafi, Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations, Eng. Anal. Bound. Elem., 67 (2016), 152-163.  doi: 10.1016/j.enganabound.2016.03.009.  Google Scholar

[12]

J. Hull and A. White, The use of the control variate technique in option pricing, Journal of Financial and Quantitative analysis, 23 (1988), 237-251.  doi: 10.2307/2331065.  Google Scholar

[13]

M. K. KadalbajooL. P. Tripathi and A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black-Scholes equation, Math. Comput. Modelling, 55 (2012), 1483-1505.  doi: 10.1016/j.mcm.2011.10.040.  Google Scholar

[14]

C. M. KlaijaJ. J. W. van der Vegta and H. van der Venb, Space-time discontinuous Galerkin method for the compressible Navier–Stokes equations, J. Comput. Phys., 217 (2006), 589-611.  doi: 10.1016/j.jcp.2006.01.018.  Google Scholar

[15]

M. LiW. Chen and C. S. Chen, The localized RBFs collocation methods for solving high dimensional PDEs, Eng. Anal. Bound. Elem., 37 (2013), 1300-1304.  doi: 10.1016/j.enganabound.2013.06.001.  Google Scholar

[16]

Z. Li and X. Z. Mao, Global multiquadric collocation method for groundwater contaminant source identification, Environmental modelling & software, 26 (2011), 1611-1621.  doi: 10.1016/j.envsoft.2011.07.010.  Google Scholar

[17]

Z. Li and X. Z. Mao, Global space-time multiquadric method for inverse heat conduction problem, Internat. J. Numer. Methods Engrg., 85 (2011), 355-379.  doi: 10.1002/nme.2975.  Google Scholar

[18]

F. Moukalled, L. Mangani and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Fluid Mechanics and its Applications, 113. Springer, Cham, 2016. doi: 10.1007/978-3-319-16874-6.  Google Scholar

[19]

H. Netuzhylov, A Space-Time Meshfree Collocation Method for Coupled Problems on Irregularly-Shaped Domains, Ph.D thesis, Zugl., Braunschweig, Techn. Univ., Diss., 2008. Google Scholar

[20]

R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777-797.  doi: 10.1016/j.camwa.2015.02.018.  Google Scholar

[21]

S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Series in Computational Mathematics, 39. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-68093-2.  Google Scholar

[22]

J. J.SudirhamJ. J. W. van der Vegt and R. M. J. van Damme, Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains, Appl. Numer. Math., 56 (2006), 1491-1518.  doi: 10.1016/j.apnum.2005.11.003.  Google Scholar

[23]

T. E. TezduyarS. SatheR. Keedy and K. Stein, Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 195 (2006), 2002-2027.  doi: 10.1016/j.cma.2004.09.014.  Google Scholar

[24]

C. TurchettiM. ContiP. Crippa and S. Orcioni, On the approximation of stochastic processes by approximate identity neural networks, IEEE Transactions on Neural Networks, 9 (1998), 1069-1085.  doi: 10.1109/72.728353.  Google Scholar

[25]

C. TurchettiP. CrippaM. Pirani and G. Biagetti, Representation of nonlinear random transformations by non-Gaussian stochastic neural networks, IEEE transactions on neural networks, 19 (2008), 1033-1060.  doi: 10.1109/TNN.2007.2000055.  Google Scholar

[26]

M. UddinH. Ali and A. Ali, Kernel-based local meshless method for solving multi-dimensional wave equations in irregular domain, CMES-Computer Modeling In Engineering & Sciences, 107 (2015), 463-479.   Google Scholar

[27]

M. Uddin and H. Ali, The space time kernel based numerical method for Burgers equations, Mathematics, 6 (2018), 212-222.  doi: 10.3390/math6100212.  Google Scholar

[28]

M. UddinK. KamranM. Usman and A. Ali, On the Laplace-transformed-based local meshless method for fractional-order diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 19 (2018), 221-225.  doi: 10.1080/15502287.2018.1472150.  Google Scholar

[29]

B. M. Vaganan and E. E. Priya, Generalized Cole-Hopf transformations for generalized Burgers equations, Pramana, 85 (2015), 861-867.  doi: 10.1007/s12043-015-1107-4.  Google Scholar

[30]

D. L. YoungC. C. TsaiK. MurugesanaC. M. Fan and C. W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Elements, 28 (2004), 1463-1473.  doi: 10.1016/j.enganabound.2004.07.003.  Google Scholar

[31]

H. ZhangF. LiuI. Turner and Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772-1783.  doi: 10.1016/j.camwa.2016.02.007.  Google Scholar

Figure 1.  A typical centers arrangements in global space-time domain as well as in a local sub-domain, and sparsity of descretized operator of problem 1, where $ m = 100 $, $ n = 10 $
Figure 2.  The exact solution versus the approximate solution in space-time domain corresponding to problem 1, when $ m = 1600 $ and $ n = 10 $ in domain $ (x,t)\in (-2,2)\times(0,1) $
Figure 3.  The numerical solution and error in space-time domain, corresponding to problem 2 when $ m = 400 $ and $ n = 10 $ in the domain $ (x,t)\in (0,1)\times(0,1) $
Figure 4.  Double barrier option prices obtained by space-time local kernel method
Figure 5.  Call option prices obtained by space-time local kernel method
Figure 6.  Put option prices obtained by space-time local kernel method
Table 1.  Sapce-time (ST) solution of problem 1 for different total collocation points $ m $ and stencil size $ n $, and time integration (TI) solution in domain $ (x,t)\in (-2,2)\times(0,1) $
$ m $ $ n $ $ L_{\infty} $ ST method (C.time) TI method (C.time)
100 10 1.23E-02 0.6783 3.2891
400 9.49E-02 0.7123 6.2821
1600 1.08E-04 0.9129 10.2370
2500 1.26E-04 1.1234 15.2950
100 15 2.37E-02 0.8234 4.3491
400 1.45E-03 10.2356 9.2371
1600 2.45E-03 11.2916 13.9820
2500 3.45E-04 13.1087 20.3582
100 20 2.22E-02 9.1835 10.10491
400 2.89E-03 11.2349 12.7146
1600 9.88E-03 14.8679 21.3812
2500 7.23E-04 16.1955 25.0492
$ m $ $ n $ $ L_{\infty} $ ST method (C.time) TI method (C.time)
100 10 1.23E-02 0.6783 3.2891
400 9.49E-02 0.7123 6.2821
1600 1.08E-04 0.9129 10.2370
2500 1.26E-04 1.1234 15.2950
100 15 2.37E-02 0.8234 4.3491
400 1.45E-03 10.2356 9.2371
1600 2.45E-03 11.2916 13.9820
2500 3.45E-04 13.1087 20.3582
100 20 2.22E-02 9.1835 10.10491
400 2.89E-03 11.2349 12.7146
1600 9.88E-03 14.8679 21.3812
2500 7.23E-04 16.1955 25.0492
Table 2.  Observed maximum absolute error for example 1 in Reza [20] and Kadabajoo [13] for different $ \theta $ in domain $ (x,t)\in (-2,2)\times(0,1) $
$ M = N $ 10 20 40 80 160
[20] for $ \theta=1 $ 7.24E-02 3.12E-02 1.39E-02 6.08E-02 2.71E-04
[20] for $ \theta=\frac{1}{2} $ 1.12E-03 2.08E-02 3.91E-05 7.19E-06 1.31E-06
[13] for $ \theta=1 $ 7.44E-02 3.94E-02 2.02E-02 1.02E-02 5.16E-03
[13] for $ \theta=\frac{1}{2} $ 5.89E-03 1.46E-03 3.64E-04 9.10E-05 2.27E-05
$ M = N $ 10 20 40 80 160
[20] for $ \theta=1 $ 7.24E-02 3.12E-02 1.39E-02 6.08E-02 2.71E-04
[20] for $ \theta=\frac{1}{2} $ 1.12E-03 2.08E-02 3.91E-05 7.19E-06 1.31E-06
[13] for $ \theta=1 $ 7.44E-02 3.94E-02 2.02E-02 1.02E-02 5.16E-03
[13] for $ \theta=\frac{1}{2} $ 5.89E-03 1.46E-03 3.64E-04 9.10E-05 2.27E-05
[1]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[9]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[10]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[11]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[12]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[15]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[16]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[18]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (167)
  • HTML views (337)
  • Cited by (0)

Other articles
by authors

[Back to Top]