
-
Previous Article
Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation
- DCDS-S Home
- This Issue
-
Next Article
Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation
Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion
Department of Mathematics, University of Cádiz, PO.BOX 40, 11510 Puerto Real, Cádiz, Spain |
We provide a complete classification of point symmetries and low-order local conservation laws of the generalized quasilinear KdV equation in terms of the arbitrary function. The corresponding interpretation of symmetry transformation groups are given. In addition, a physical description of the conserved quantities is included. Finally, few travelling wave solutions have been obtained.
References:
[1] |
L. M. Alonso,
On the Noether map, Lett. Math. Phys., 3 (1979), 419-424.
doi: 10.1007/BF00397216. |
[2] |
D. M. Ambrose and J. D. Wright,
Traveling waves and weak solutions for an equation with degenerate dispersion, Proc. Amer. Math. Soc., 141 (2013), 3825-3838.
doi: 10.1090/S0002-9939-2013-12070-8. |
[3] |
S. C. Anco,
Symmetry properties of conservation laws, Internat. J. Modern Phys. B, 30 (2016), 28-29.
doi: 10.1142/S0217979216400038. |
[4] |
S. C. Anco, Generalization of noether's theorem in modern form to non-variational partial
differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182. |
[5] |
S. C. Anco and G. Bluman,
Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869. |
[6] |
S. C. Anco and G. Bluman,
Integrating factors and first integrals for ordinary differential equations, European J. Appl. Math., 9 (1998), 245-259.
doi: 10.1017/S0956792598003477. |
[7] |
S. C. Anco and G. Bluman,
Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European J. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S095679250100465X. |
[8] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations part 2: General treatment, European J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[9] |
G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154. Springer-Verlag, New York, 2002. |
[10] |
G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010.
doi: 10.1007/978-0-387-68028-6. |
[11] |
G. W. Bluman and J. D. Cole,
General similarity solution of the heat equation, J. Math. Mech., 18 (1968/69), 1025-1042.
|
[12] |
G. Bluman and S. Kumei,
On the remarkable nonlinear diffusion equation $(\partial /\partial x)[a(u+b)^{-2}(\partial u/\partial x)] -(\partial u/\partial t) = 0$., J. Math. Phys., 21 (1980), 1019-1023.
doi: 10.1063/1.524550. |
[13] |
G. W. Bluman, S. Kumei and G. J. Reid,
New classes of symmetries for partial differential equations, J. Math. Phys., 29 (1988), 806-811.
doi: 10.1063/1.527974. |
[14] |
M. S. Bruzón and T. M. Garrido,
Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.
doi: 10.3934/dcdss.2018038. |
[15] |
M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez and R. de la Rosa,
On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation, Math. Methods Appl. Sci., 41 (2018), 7325-7332.
doi: 10.1002/mma.4829. |
[16] |
M. S. Bruzón, M. L. Gandarias and R. de la Rosa, An overview of the generalized Gardner
equation: Symmetry groups and conservation laws, A Mathematical Modeling Approach from
Nonlinear Dynamics to Complex Systems, Nonlinear Syst. Complex., Springer, Cham, 22 (2019), 7-26. |
[17] |
F. Cooper, H. Shepard and P. Sodano,
Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3), 48 (1993), 4027-4032.
doi: 10.1103/PhysRevE.48.4027. |
[18] |
P. Germain, B. Harrop-Griffiths and J. M. Marzuola,
Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math., 72 (2019), 2449-2484.
doi: 10.1002/cpa.21828. |
[19] |
A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan,
A new integrable generalization of the Korteweg de Vries equation, Journal of Mathematical Physics, 49 (2008), 10 pp.
doi: 10.1063/1.2953474. |
[20] |
N. A. Kudryashov,
On 'new travelling wave solutions' of the KdV and the KdV Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1891-1900.
doi: 10.1016/j.cnsns.2008.09.020. |
[21] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[22] |
E. Recio and S. C. Anco,
Conservation laws and symmetries of radial generalized nonlinear p-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.
doi: 10.1016/j.jmaa.2017.03.050. |
[23] |
P. Rosenau and J. M. Hyman,
Compactons: Solitons with finite wavelength, Physical Review Letters, 70 (1993), 564-567.
|
[24] |
J. Satsuma and R. Hirota,
A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan, 51 (1982), 3390-3397.
doi: 10.1143/JPSJ.51.3390. |
[25] |
K. Sawada and T. Kotera,
A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Theoret. Phys., 51 (1974), 1355-1367.
doi: 10.1143/PTP.51.1355. |
[26] |
J. Weiss, M. Tabor and G. Carnevale,
The painlevè property for partial differential equations, J. Math. Phys., 24 (1983), 522-526.
doi: 10.1063/1.525721. |
[27] |
G. A. Zakeri and E. Yomba,
Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607-4616.
doi: 10.1016/j.apm.2015.04.027. |
show all references
References:
[1] |
L. M. Alonso,
On the Noether map, Lett. Math. Phys., 3 (1979), 419-424.
doi: 10.1007/BF00397216. |
[2] |
D. M. Ambrose and J. D. Wright,
Traveling waves and weak solutions for an equation with degenerate dispersion, Proc. Amer. Math. Soc., 141 (2013), 3825-3838.
doi: 10.1090/S0002-9939-2013-12070-8. |
[3] |
S. C. Anco,
Symmetry properties of conservation laws, Internat. J. Modern Phys. B, 30 (2016), 28-29.
doi: 10.1142/S0217979216400038. |
[4] |
S. C. Anco, Generalization of noether's theorem in modern form to non-variational partial
differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182. |
[5] |
S. C. Anco and G. Bluman,
Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869. |
[6] |
S. C. Anco and G. Bluman,
Integrating factors and first integrals for ordinary differential equations, European J. Appl. Math., 9 (1998), 245-259.
doi: 10.1017/S0956792598003477. |
[7] |
S. C. Anco and G. Bluman,
Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European J. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S095679250100465X. |
[8] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations part 2: General treatment, European J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[9] |
G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154. Springer-Verlag, New York, 2002. |
[10] |
G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010.
doi: 10.1007/978-0-387-68028-6. |
[11] |
G. W. Bluman and J. D. Cole,
General similarity solution of the heat equation, J. Math. Mech., 18 (1968/69), 1025-1042.
|
[12] |
G. Bluman and S. Kumei,
On the remarkable nonlinear diffusion equation $(\partial /\partial x)[a(u+b)^{-2}(\partial u/\partial x)] -(\partial u/\partial t) = 0$., J. Math. Phys., 21 (1980), 1019-1023.
doi: 10.1063/1.524550. |
[13] |
G. W. Bluman, S. Kumei and G. J. Reid,
New classes of symmetries for partial differential equations, J. Math. Phys., 29 (1988), 806-811.
doi: 10.1063/1.527974. |
[14] |
M. S. Bruzón and T. M. Garrido,
Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.
doi: 10.3934/dcdss.2018038. |
[15] |
M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez and R. de la Rosa,
On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation, Math. Methods Appl. Sci., 41 (2018), 7325-7332.
doi: 10.1002/mma.4829. |
[16] |
M. S. Bruzón, M. L. Gandarias and R. de la Rosa, An overview of the generalized Gardner
equation: Symmetry groups and conservation laws, A Mathematical Modeling Approach from
Nonlinear Dynamics to Complex Systems, Nonlinear Syst. Complex., Springer, Cham, 22 (2019), 7-26. |
[17] |
F. Cooper, H. Shepard and P. Sodano,
Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3), 48 (1993), 4027-4032.
doi: 10.1103/PhysRevE.48.4027. |
[18] |
P. Germain, B. Harrop-Griffiths and J. M. Marzuola,
Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math., 72 (2019), 2449-2484.
doi: 10.1002/cpa.21828. |
[19] |
A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan,
A new integrable generalization of the Korteweg de Vries equation, Journal of Mathematical Physics, 49 (2008), 10 pp.
doi: 10.1063/1.2953474. |
[20] |
N. A. Kudryashov,
On 'new travelling wave solutions' of the KdV and the KdV Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1891-1900.
doi: 10.1016/j.cnsns.2008.09.020. |
[21] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[22] |
E. Recio and S. C. Anco,
Conservation laws and symmetries of radial generalized nonlinear p-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.
doi: 10.1016/j.jmaa.2017.03.050. |
[23] |
P. Rosenau and J. M. Hyman,
Compactons: Solitons with finite wavelength, Physical Review Letters, 70 (1993), 564-567.
|
[24] |
J. Satsuma and R. Hirota,
A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan, 51 (1982), 3390-3397.
doi: 10.1143/JPSJ.51.3390. |
[25] |
K. Sawada and T. Kotera,
A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Theoret. Phys., 51 (1974), 1355-1367.
doi: 10.1143/PTP.51.1355. |
[26] |
J. Weiss, M. Tabor and G. Carnevale,
The painlevè property for partial differential equations, J. Math. Phys., 24 (1983), 522-526.
doi: 10.1063/1.525721. |
[27] |
G. A. Zakeri and E. Yomba,
Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607-4616.
doi: 10.1016/j.apm.2015.04.027. |



[1] |
María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038 |
[2] |
Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035 |
[3] |
Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415 |
[4] |
María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 |
[5] |
Narciso Román-Roy. A summary on symmetries and conserved quantities of autonomous Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (3) : 541-551. doi: 10.3934/jgm.2020009 |
[6] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[7] |
Jibin Li, Weigou Rui, Yao Long, Bin He. Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences & Engineering, 2006, 3 (1) : 125-135. doi: 10.3934/mbe.2006.3.125 |
[8] |
Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871 |
[9] |
Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597 |
[10] |
Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889 |
[11] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[12] |
C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477 |
[13] |
Zhijie Cao, Lijun Zhang. Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2703-2717. doi: 10.3934/dcdss.2020218 |
[14] |
Martin Oberlack, Andreas Rosteck. New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 451-471. doi: 10.3934/dcdss.2010.3.451 |
[15] |
Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 |
[16] |
Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012 |
[17] |
Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257 |
[18] |
Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973 |
[19] |
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 |
[20] |
Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]