We provide a complete classification of point symmetries and low-order local conservation laws of the generalized quasilinear KdV equation in terms of the arbitrary function. The corresponding interpretation of symmetry transformation groups are given. In addition, a physical description of the conserved quantities is included. Finally, few travelling wave solutions have been obtained.
Citation: |
[1] |
L. M. Alonso, On the Noether map, Lett. Math. Phys., 3 (1979), 419-424.
doi: 10.1007/BF00397216.![]() ![]() ![]() |
[2] |
D. M. Ambrose and J. D. Wright, Traveling waves and weak solutions for an equation with degenerate dispersion, Proc. Amer. Math. Soc., 141 (2013), 3825-3838.
doi: 10.1090/S0002-9939-2013-12070-8.![]() ![]() ![]() |
[3] |
S. C. Anco, Symmetry properties of conservation laws, Internat. J. Modern Phys. B, 30 (2016), 28-29.
doi: 10.1142/S0217979216400038.![]() ![]() ![]() |
[4] |
S. C. Anco, Generalization of noether's theorem in modern form to non-variational partial
differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.
![]() ![]() |
[5] |
S. C. Anco and G. Bluman, Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869.![]() ![]() ![]() |
[6] |
S. C. Anco and G. Bluman, Integrating factors and first integrals for ordinary differential equations, European J. Appl. Math., 9 (1998), 245-259.
doi: 10.1017/S0956792598003477.![]() ![]() ![]() |
[7] |
S. C. Anco and G. Bluman, Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European J. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S095679250100465X.![]() ![]() ![]() |
[8] |
S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations part 2: General treatment, European J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661.![]() ![]() ![]() |
[9] |
G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154. Springer-Verlag, New York, 2002.
![]() ![]() |
[10] |
G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010.
doi: 10.1007/978-0-387-68028-6.![]() ![]() ![]() |
[11] |
G. W. Bluman and J. D. Cole, General similarity solution of the heat equation, J. Math. Mech., 18 (1968/69), 1025-1042.
![]() ![]() |
[12] |
G. Bluman and S. Kumei, On the remarkable nonlinear diffusion equation $(\partial /\partial x)[a(u+b)^{-2}(\partial u/\partial x)] -(\partial u/\partial t) = 0$., J. Math. Phys., 21 (1980), 1019-1023.
doi: 10.1063/1.524550.![]() ![]() ![]() |
[13] |
G. W. Bluman, S. Kumei and G. J. Reid, New classes of symmetries for partial differential equations, J. Math. Phys., 29 (1988), 806-811.
doi: 10.1063/1.527974.![]() ![]() ![]() |
[14] |
M. S. Bruzón and T. M. Garrido, Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.
doi: 10.3934/dcdss.2018038.![]() ![]() ![]() |
[15] |
M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez and R. de la Rosa, On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation, Math. Methods Appl. Sci., 41 (2018), 7325-7332.
doi: 10.1002/mma.4829.![]() ![]() ![]() |
[16] |
M. S. Bruzón, M. L. Gandarias and R. de la Rosa, An overview of the generalized Gardner
equation: Symmetry groups and conservation laws, A Mathematical Modeling Approach from
Nonlinear Dynamics to Complex Systems, Nonlinear Syst. Complex., Springer, Cham, 22 (2019), 7-26.
![]() ![]() |
[17] |
F. Cooper, H. Shepard and P. Sodano, Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3), 48 (1993), 4027-4032.
doi: 10.1103/PhysRevE.48.4027.![]() ![]() ![]() |
[18] |
P. Germain, B. Harrop-Griffiths and J. M. Marzuola, Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math., 72 (2019), 2449-2484.
doi: 10.1002/cpa.21828.![]() ![]() ![]() |
[19] |
A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan, A new integrable generalization of the Korteweg de Vries equation, Journal of Mathematical Physics, 49 (2008), 10 pp.
doi: 10.1063/1.2953474.![]() ![]() ![]() |
[20] |
N. A. Kudryashov, On 'new travelling wave solutions' of the KdV and the KdV Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1891-1900.
doi: 10.1016/j.cnsns.2008.09.020.![]() ![]() ![]() |
[21] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2.![]() ![]() ![]() |
[22] |
E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear p-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.
doi: 10.1016/j.jmaa.2017.03.050.![]() ![]() ![]() |
[23] |
P. Rosenau and J. M. Hyman, Compactons: Solitons with finite wavelength, Physical Review Letters, 70 (1993), 564-567.
![]() |
[24] |
J. Satsuma and R. Hirota, A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan, 51 (1982), 3390-3397.
doi: 10.1143/JPSJ.51.3390.![]() ![]() ![]() |
[25] |
K. Sawada and T. Kotera, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Theoret. Phys., 51 (1974), 1355-1367.
doi: 10.1143/PTP.51.1355.![]() ![]() ![]() |
[26] |
J. Weiss, M. Tabor and G. Carnevale, The painlevè property for partial differential equations, J. Math. Phys., 24 (1983), 522-526.
doi: 10.1063/1.525721.![]() ![]() ![]() |
[27] |
G. A. Zakeri and E. Yomba, Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607-4616.
doi: 10.1016/j.apm.2015.04.027.![]() ![]() ![]() |
Solution
Solution
Solution