
-
Previous Article
Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation
- DCDS-S Home
- This Issue
-
Next Article
Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation
Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion
Department of Mathematics, University of Cádiz, PO.BOX 40, 11510 Puerto Real, Cádiz, Spain |
We provide a complete classification of point symmetries and low-order local conservation laws of the generalized quasilinear KdV equation in terms of the arbitrary function. The corresponding interpretation of symmetry transformation groups are given. In addition, a physical description of the conserved quantities is included. Finally, few travelling wave solutions have been obtained.
References:
[1] |
L. M. Alonso,
On the Noether map, Lett. Math. Phys., 3 (1979), 419-424.
doi: 10.1007/BF00397216. |
[2] |
D. M. Ambrose and J. D. Wright,
Traveling waves and weak solutions for an equation with degenerate dispersion, Proc. Amer. Math. Soc., 141 (2013), 3825-3838.
doi: 10.1090/S0002-9939-2013-12070-8. |
[3] |
S. C. Anco,
Symmetry properties of conservation laws, Internat. J. Modern Phys. B, 30 (2016), 28-29.
doi: 10.1142/S0217979216400038. |
[4] |
S. C. Anco, Generalization of noether's theorem in modern form to non-variational partial
differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182. |
[5] |
S. C. Anco and G. Bluman,
Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869. |
[6] |
S. C. Anco and G. Bluman,
Integrating factors and first integrals for ordinary differential equations, European J. Appl. Math., 9 (1998), 245-259.
doi: 10.1017/S0956792598003477. |
[7] |
S. C. Anco and G. Bluman,
Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European J. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S095679250100465X. |
[8] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations part 2: General treatment, European J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[9] |
G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154. Springer-Verlag, New York, 2002. |
[10] |
G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010.
doi: 10.1007/978-0-387-68028-6. |
[11] |
G. W. Bluman and J. D. Cole,
General similarity solution of the heat equation, J. Math. Mech., 18 (1968/69), 1025-1042.
|
[12] |
G. Bluman and S. Kumei,
On the remarkable nonlinear diffusion equation $(\partial /\partial x)[a(u+b)^{-2}(\partial u/\partial x)] -(\partial u/\partial t) = 0$., J. Math. Phys., 21 (1980), 1019-1023.
doi: 10.1063/1.524550. |
[13] |
G. W. Bluman, S. Kumei and G. J. Reid,
New classes of symmetries for partial differential equations, J. Math. Phys., 29 (1988), 806-811.
doi: 10.1063/1.527974. |
[14] |
M. S. Bruzón and T. M. Garrido,
Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.
doi: 10.3934/dcdss.2018038. |
[15] |
M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez and R. de la Rosa,
On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation, Math. Methods Appl. Sci., 41 (2018), 7325-7332.
doi: 10.1002/mma.4829. |
[16] |
M. S. Bruzón, M. L. Gandarias and R. de la Rosa, An overview of the generalized Gardner
equation: Symmetry groups and conservation laws, A Mathematical Modeling Approach from
Nonlinear Dynamics to Complex Systems, Nonlinear Syst. Complex., Springer, Cham, 22 (2019), 7-26. |
[17] |
F. Cooper, H. Shepard and P. Sodano,
Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3), 48 (1993), 4027-4032.
doi: 10.1103/PhysRevE.48.4027. |
[18] |
P. Germain, B. Harrop-Griffiths and J. M. Marzuola,
Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math., 72 (2019), 2449-2484.
doi: 10.1002/cpa.21828. |
[19] |
A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan,
A new integrable generalization of the Korteweg de Vries equation, Journal of Mathematical Physics, 49 (2008), 10 pp.
doi: 10.1063/1.2953474. |
[20] |
N. A. Kudryashov,
On 'new travelling wave solutions' of the KdV and the KdV Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1891-1900.
doi: 10.1016/j.cnsns.2008.09.020. |
[21] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[22] |
E. Recio and S. C. Anco,
Conservation laws and symmetries of radial generalized nonlinear p-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.
doi: 10.1016/j.jmaa.2017.03.050. |
[23] |
P. Rosenau and J. M. Hyman, Compactons: Solitons with finite wavelength, Physical Review Letters, 70 (1993), 564-567. Google Scholar |
[24] |
J. Satsuma and R. Hirota,
A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan, 51 (1982), 3390-3397.
doi: 10.1143/JPSJ.51.3390. |
[25] |
K. Sawada and T. Kotera,
A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Theoret. Phys., 51 (1974), 1355-1367.
doi: 10.1143/PTP.51.1355. |
[26] |
J. Weiss, M. Tabor and G. Carnevale,
The painlevè property for partial differential equations, J. Math. Phys., 24 (1983), 522-526.
doi: 10.1063/1.525721. |
[27] |
G. A. Zakeri and E. Yomba,
Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607-4616.
doi: 10.1016/j.apm.2015.04.027. |
show all references
References:
[1] |
L. M. Alonso,
On the Noether map, Lett. Math. Phys., 3 (1979), 419-424.
doi: 10.1007/BF00397216. |
[2] |
D. M. Ambrose and J. D. Wright,
Traveling waves and weak solutions for an equation with degenerate dispersion, Proc. Amer. Math. Soc., 141 (2013), 3825-3838.
doi: 10.1090/S0002-9939-2013-12070-8. |
[3] |
S. C. Anco,
Symmetry properties of conservation laws, Internat. J. Modern Phys. B, 30 (2016), 28-29.
doi: 10.1142/S0217979216400038. |
[4] |
S. C. Anco, Generalization of noether's theorem in modern form to non-variational partial
differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182. |
[5] |
S. C. Anco and G. Bluman,
Direct construction of conservation laws from field equations, Phys. Rev. Lett., 78 (1997), 2869-2873.
doi: 10.1103/PhysRevLett.78.2869. |
[6] |
S. C. Anco and G. Bluman,
Integrating factors and first integrals for ordinary differential equations, European J. Appl. Math., 9 (1998), 245-259.
doi: 10.1017/S0956792598003477. |
[7] |
S. C. Anco and G. Bluman,
Direct constrution method for conservation laws of partial differential equations part 1: Examples of conservation law classifications, European J. Appl. Math., 13 (2002), 545-566.
doi: 10.1017/S095679250100465X. |
[8] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of partial differential equations part 2: General treatment, European J. Appl. Math., 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[9] |
G. W. Bluman, S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154. Springer-Verlag, New York, 2002. |
[10] |
G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010.
doi: 10.1007/978-0-387-68028-6. |
[11] |
G. W. Bluman and J. D. Cole,
General similarity solution of the heat equation, J. Math. Mech., 18 (1968/69), 1025-1042.
|
[12] |
G. Bluman and S. Kumei,
On the remarkable nonlinear diffusion equation $(\partial /\partial x)[a(u+b)^{-2}(\partial u/\partial x)] -(\partial u/\partial t) = 0$., J. Math. Phys., 21 (1980), 1019-1023.
doi: 10.1063/1.524550. |
[13] |
G. W. Bluman, S. Kumei and G. J. Reid,
New classes of symmetries for partial differential equations, J. Math. Phys., 29 (1988), 806-811.
doi: 10.1063/1.527974. |
[14] |
M. S. Bruzón and T. M. Garrido,
Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.
doi: 10.3934/dcdss.2018038. |
[15] |
M. S. Bruzón, E. Recio, T. M. Garrido, A. P. Márquez and R. de la Rosa,
On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation, Math. Methods Appl. Sci., 41 (2018), 7325-7332.
doi: 10.1002/mma.4829. |
[16] |
M. S. Bruzón, M. L. Gandarias and R. de la Rosa, An overview of the generalized Gardner
equation: Symmetry groups and conservation laws, A Mathematical Modeling Approach from
Nonlinear Dynamics to Complex Systems, Nonlinear Syst. Complex., Springer, Cham, 22 (2019), 7-26. |
[17] |
F. Cooper, H. Shepard and P. Sodano,
Solitary waves in a class of generalized Korteweg-de Vries equations, Phys. Rev. E (3), 48 (1993), 4027-4032.
doi: 10.1103/PhysRevE.48.4027. |
[18] |
P. Germain, B. Harrop-Griffiths and J. M. Marzuola,
Existence and uniqueness of solutions for a quasilinear KdV equation with degenerate dispersion, Comm. Pure Appl. Math., 72 (2019), 2449-2484.
doi: 10.1002/cpa.21828. |
[19] |
A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich and R. Turhan,
A new integrable generalization of the Korteweg de Vries equation, Journal of Mathematical Physics, 49 (2008), 10 pp.
doi: 10.1063/1.2953474. |
[20] |
N. A. Kudryashov,
On 'new travelling wave solutions' of the KdV and the KdV Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1891-1900.
doi: 10.1016/j.cnsns.2008.09.020. |
[21] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[22] |
E. Recio and S. C. Anco,
Conservation laws and symmetries of radial generalized nonlinear p-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.
doi: 10.1016/j.jmaa.2017.03.050. |
[23] |
P. Rosenau and J. M. Hyman, Compactons: Solitons with finite wavelength, Physical Review Letters, 70 (1993), 564-567. Google Scholar |
[24] |
J. Satsuma and R. Hirota,
A coupled KdV equation is one case of the four-reduction of the KP hierarchy, J. Phys. Soc. Japan, 51 (1982), 3390-3397.
doi: 10.1143/JPSJ.51.3390. |
[25] |
K. Sawada and T. Kotera,
A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Theoret. Phys., 51 (1974), 1355-1367.
doi: 10.1143/PTP.51.1355. |
[26] |
J. Weiss, M. Tabor and G. Carnevale,
The painlevè property for partial differential equations, J. Math. Phys., 24 (1983), 522-526.
doi: 10.1063/1.525721. |
[27] |
G. A. Zakeri and E. Yomba,
Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607-4616.
doi: 10.1016/j.apm.2015.04.027. |



[1] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[2] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[3] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[4] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[5] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[6] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[7] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[8] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[9] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[10] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[11] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[12] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[13] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[14] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[15] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[16] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[17] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[18] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[19] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[20] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]