• Previous Article
    Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation
  • DCDS-S Home
  • This Issue
  • Next Article
    Local meshless differential quadrature collocation method for time-fractional PDEs
October  2020, 13(10): 2655-2665. doi: 10.3934/dcdss.2020225

Conservation laws and line soliton solutions of a family of modified KP equations

1. 

Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S3A1, Canada

2. 

Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, Cádiz, 11510, Spain

Received  February 2019 Revised  July 2019 Published  December 2019

A family of modified Kadomtsev-Petviashvili equations (mKP) in 2+1 dimensions is studied. This family includes the integrable mKP equation when the coefficients of the nonlinear terms and the transverse dispersion term satisfy an algebraic condition. The explicit line soliton solution and all conservation laws of low order are derived for all equations in the family and compared to their counterparts in the integrable case.

Citation: Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225
References:
[1]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.  doi: 10.1017/S0022112079000835.  Google Scholar

[2]

S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.   Google Scholar

[3]

S. C. Anco, Conservation laws of scaling-invariant field equations, J. Phys. A: Math. and Gen., 36 (2003), 8623-8638.  doi: 10.1088/0305-4470/36/32/305.  Google Scholar

[4]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. J. Appl. Math., 41 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[5]

S. C. AncoM. L. Gandarias and E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393-1411.  doi: 10.4213/tmf9483.  Google Scholar

[6]

G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010. doi: 10.1007/978-0-387-68028-6.  Google Scholar

[7]

Y. Z. Chen and P. L.-F. Liu, A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level, Wave Motion, 27 (1998), 321-339.  doi: 10.1016/S0165-2125(97)00057-7.  Google Scholar

[8]

G. C. Das and J. Sarma, Evolution of solitary wave in multicomponent plasmas, Chaos, Solitons and Fractals, 9 (1998), 901-911.  doi: 10.1016/S0960-0779(97)00170-7.  Google Scholar

[9]

F. GesztesyH. HoldenE. Saab and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal., 98 (1991), 211-228.  doi: 10.1016/0022-1236(91)90096-N.  Google Scholar

[10]

B. B. Kadomstev and V. I. Petviashvili, On the stability of waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.   Google Scholar

[11]

B. Konopel'chenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in $2+1$ dimensions, Phys. Lett. A, 102 (1984), 15-17.  doi: 10.1016/0375-9601(84)90442-0.  Google Scholar

[12]

B. G. Konopel'chenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Studies in Applied Math., 86 (1992), 219-268.  doi: 10.1002/sapm1992863219.  Google Scholar

[13]

R. Naz, Z. Ali and I. Naeem, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem, Abstract and Applied Analysis, (2013), Art. ID 340564, 11 pp. doi: 10.1155/2013/340564.  Google Scholar

[14]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[15]

E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear $p$-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.  doi: 10.1016/j.jmaa.2017.03.050.  Google Scholar

[16]

V. Veerakumar and M. Daniel, Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton, Math. Comput. Simulat., 62 (2003), 163-169.  doi: 10.1016/S0378-4754(02)00176-3.  Google Scholar

[17]

T. Wolf, A comparison of four approaches to the calculation of conservation laws, Euro. J. Appl. Math., 13 (2002), 129-152.  doi: 10.1017/S0956792501004715.  Google Scholar

[18]

X. S. ZhaoW. XuH. B. Jia and H. X. Zhou, Solitary wave solutions for the modified Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34 (2007), 465-475.  doi: 10.1016/j.chaos.2006.03.046.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.  doi: 10.1017/S0022112079000835.  Google Scholar

[2]

S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.   Google Scholar

[3]

S. C. Anco, Conservation laws of scaling-invariant field equations, J. Phys. A: Math. and Gen., 36 (2003), 8623-8638.  doi: 10.1088/0305-4470/36/32/305.  Google Scholar

[4]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. J. Appl. Math., 41 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[5]

S. C. AncoM. L. Gandarias and E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393-1411.  doi: 10.4213/tmf9483.  Google Scholar

[6]

G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010. doi: 10.1007/978-0-387-68028-6.  Google Scholar

[7]

Y. Z. Chen and P. L.-F. Liu, A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level, Wave Motion, 27 (1998), 321-339.  doi: 10.1016/S0165-2125(97)00057-7.  Google Scholar

[8]

G. C. Das and J. Sarma, Evolution of solitary wave in multicomponent plasmas, Chaos, Solitons and Fractals, 9 (1998), 901-911.  doi: 10.1016/S0960-0779(97)00170-7.  Google Scholar

[9]

F. GesztesyH. HoldenE. Saab and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal., 98 (1991), 211-228.  doi: 10.1016/0022-1236(91)90096-N.  Google Scholar

[10]

B. B. Kadomstev and V. I. Petviashvili, On the stability of waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.   Google Scholar

[11]

B. Konopel'chenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in $2+1$ dimensions, Phys. Lett. A, 102 (1984), 15-17.  doi: 10.1016/0375-9601(84)90442-0.  Google Scholar

[12]

B. G. Konopel'chenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Studies in Applied Math., 86 (1992), 219-268.  doi: 10.1002/sapm1992863219.  Google Scholar

[13]

R. Naz, Z. Ali and I. Naeem, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem, Abstract and Applied Analysis, (2013), Art. ID 340564, 11 pp. doi: 10.1155/2013/340564.  Google Scholar

[14]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[15]

E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear $p$-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.  doi: 10.1016/j.jmaa.2017.03.050.  Google Scholar

[16]

V. Veerakumar and M. Daniel, Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton, Math. Comput. Simulat., 62 (2003), 163-169.  doi: 10.1016/S0378-4754(02)00176-3.  Google Scholar

[17]

T. Wolf, A comparison of four approaches to the calculation of conservation laws, Euro. J. Appl. Math., 13 (2002), 129-152.  doi: 10.1017/S0956792501004715.  Google Scholar

[18]

X. S. ZhaoW. XuH. B. Jia and H. X. Zhou, Solitary wave solutions for the modified Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34 (2007), 465-475.  doi: 10.1016/j.chaos.2006.03.046.  Google Scholar

Figure 1.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (40)
Figure 2.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (40) in the defocussing case ($ \sigma_1 = -1 $)
Figure 3.  Profile of the mKP line soliton (39) and mKP family line soliton (40) and (45) for $ (h,w) = $ $ (1,1) $ (solid); $ (4,1) $ (long dash); $ (\tfrac{1}{5},1) $ (dash dot); $ (1,4) $ (dash); $ (1,\tfrac{1}{2}) $ (dot)
Figure 4.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (45) in the defocussing case ($ \sigma_1 = -1 $)
[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[3]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[4]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[5]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[6]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[7]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[8]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[9]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[12]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[13]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[17]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[18]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[19]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[20]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (172)
  • HTML views (322)
  • Cited by (1)

[Back to Top]