doi: 10.3934/dcdss.2020225

Conservation laws and line soliton solutions of a family of modified KP equations

1. 

Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S3A1, Canada

2. 

Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, Cádiz, 11510, Spain

Received  February 2019 Revised  July 2019 Published  December 2019

A family of modified Kadomtsev-Petviashvili equations (mKP) in 2+1 dimensions is studied. This family includes the integrable mKP equation when the coefficients of the nonlinear terms and the transverse dispersion term satisfy an algebraic condition. The explicit line soliton solution and all conservation laws of low order are derived for all equations in the family and compared to their counterparts in the integrable case.

Citation: Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020225
References:
[1]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.  doi: 10.1017/S0022112079000835.  Google Scholar

[2]

S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.   Google Scholar

[3]

S. C. Anco, Conservation laws of scaling-invariant field equations, J. Phys. A: Math. and Gen., 36 (2003), 8623-8638.  doi: 10.1088/0305-4470/36/32/305.  Google Scholar

[4]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. J. Appl. Math., 41 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[5]

S. C. AncoM. L. Gandarias and E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393-1411.  doi: 10.4213/tmf9483.  Google Scholar

[6]

G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010. doi: 10.1007/978-0-387-68028-6.  Google Scholar

[7]

Y. Z. Chen and P. L.-F. Liu, A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level, Wave Motion, 27 (1998), 321-339.  doi: 10.1016/S0165-2125(97)00057-7.  Google Scholar

[8]

G. C. Das and J. Sarma, Evolution of solitary wave in multicomponent plasmas, Chaos, Solitons and Fractals, 9 (1998), 901-911.  doi: 10.1016/S0960-0779(97)00170-7.  Google Scholar

[9]

F. GesztesyH. HoldenE. Saab and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal., 98 (1991), 211-228.  doi: 10.1016/0022-1236(91)90096-N.  Google Scholar

[10]

B. B. Kadomstev and V. I. Petviashvili, On the stability of waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.   Google Scholar

[11]

B. Konopel'chenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in $2+1$ dimensions, Phys. Lett. A, 102 (1984), 15-17.  doi: 10.1016/0375-9601(84)90442-0.  Google Scholar

[12]

B. G. Konopel'chenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Studies in Applied Math., 86 (1992), 219-268.  doi: 10.1002/sapm1992863219.  Google Scholar

[13]

R. Naz, Z. Ali and I. Naeem, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem, Abstract and Applied Analysis, (2013), Art. ID 340564, 11 pp. doi: 10.1155/2013/340564.  Google Scholar

[14]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[15]

E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear $p$-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.  doi: 10.1016/j.jmaa.2017.03.050.  Google Scholar

[16]

V. Veerakumar and M. Daniel, Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton, Math. Comput. Simulat., 62 (2003), 163-169.  doi: 10.1016/S0378-4754(02)00176-3.  Google Scholar

[17]

T. Wolf, A comparison of four approaches to the calculation of conservation laws, Euro. J. Appl. Math., 13 (2002), 129-152.  doi: 10.1017/S0956792501004715.  Google Scholar

[18]

X. S. ZhaoW. XuH. B. Jia and H. X. Zhou, Solitary wave solutions for the modified Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34 (2007), 465-475.  doi: 10.1016/j.chaos.2006.03.046.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.  doi: 10.1017/S0022112079000835.  Google Scholar

[2]

S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.   Google Scholar

[3]

S. C. Anco, Conservation laws of scaling-invariant field equations, J. Phys. A: Math. and Gen., 36 (2003), 8623-8638.  doi: 10.1088/0305-4470/36/32/305.  Google Scholar

[4]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. J. Appl. Math., 41 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[5]

S. C. AncoM. L. Gandarias and E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393-1411.  doi: 10.4213/tmf9483.  Google Scholar

[6]

G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010. doi: 10.1007/978-0-387-68028-6.  Google Scholar

[7]

Y. Z. Chen and P. L.-F. Liu, A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level, Wave Motion, 27 (1998), 321-339.  doi: 10.1016/S0165-2125(97)00057-7.  Google Scholar

[8]

G. C. Das and J. Sarma, Evolution of solitary wave in multicomponent plasmas, Chaos, Solitons and Fractals, 9 (1998), 901-911.  doi: 10.1016/S0960-0779(97)00170-7.  Google Scholar

[9]

F. GesztesyH. HoldenE. Saab and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal., 98 (1991), 211-228.  doi: 10.1016/0022-1236(91)90096-N.  Google Scholar

[10]

B. B. Kadomstev and V. I. Petviashvili, On the stability of waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.   Google Scholar

[11]

B. Konopel'chenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in $2+1$ dimensions, Phys. Lett. A, 102 (1984), 15-17.  doi: 10.1016/0375-9601(84)90442-0.  Google Scholar

[12]

B. G. Konopel'chenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Studies in Applied Math., 86 (1992), 219-268.  doi: 10.1002/sapm1992863219.  Google Scholar

[13]

R. Naz, Z. Ali and I. Naeem, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem, Abstract and Applied Analysis, (2013), Art. ID 340564, 11 pp. doi: 10.1155/2013/340564.  Google Scholar

[14]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[15]

E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear $p$-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.  doi: 10.1016/j.jmaa.2017.03.050.  Google Scholar

[16]

V. Veerakumar and M. Daniel, Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton, Math. Comput. Simulat., 62 (2003), 163-169.  doi: 10.1016/S0378-4754(02)00176-3.  Google Scholar

[17]

T. Wolf, A comparison of four approaches to the calculation of conservation laws, Euro. J. Appl. Math., 13 (2002), 129-152.  doi: 10.1017/S0956792501004715.  Google Scholar

[18]

X. S. ZhaoW. XuH. B. Jia and H. X. Zhou, Solitary wave solutions for the modified Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34 (2007), 465-475.  doi: 10.1016/j.chaos.2006.03.046.  Google Scholar

Figure 1.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (40)
Figure 2.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (40) in the defocussing case ($ \sigma_1 = -1 $)
Figure 3.  Profile of the mKP line soliton (39) and mKP family line soliton (40) and (45) for $ (h,w) = $ $ (1,1) $ (solid); $ (4,1) $ (long dash); $ (\tfrac{1}{5},1) $ (dash dot); $ (1,4) $ (dash); $ (1,\tfrac{1}{2}) $ (dot)
Figure 4.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (45) in the defocussing case ($ \sigma_1 = -1 $)
[1]

Weipeng Hu, Zichen Deng, Yuyue Qin. Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation. Journal of Geometric Mechanics, 2013, 5 (3) : 295-318. doi: 10.3934/jgm.2013.5.295

[2]

Yufeng Zhang, Wen-Xiu Ma, Jin-Yun Yang. A study on lump solutions to a (2+1)-dimensional completely generalized Hirota-Satsuma-Ito equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020167

[3]

Mostafa Abounouh, Olivier Goubet. Regularity of the attractor for kp1-Burgers equation: the periodic case. Communications on Pure & Applied Analysis, 2004, 3 (2) : 237-252. doi: 10.3934/cpaa.2004.3.237

[4]

Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211

[5]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[6]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[7]

Hartmut Pecher. Low regularity solutions for the (2+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2203-2219. doi: 10.3934/cpaa.2016034

[8]

Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020219

[9]

Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154

[10]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[11]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[12]

Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283

[13]

Tong Yang, Huijiang Zhao. Asymptotics toward strong rarefaction waves for $2\times 2$ systems of viscous conservation laws. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 251-282. doi: 10.3934/dcds.2005.12.251

[14]

Jason Murphy. The defocusing $\dot{H}^{1/2}$-critical NLS in high dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 733-748. doi: 10.3934/dcds.2014.34.733

[15]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[16]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[17]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[18]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[19]

John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149

[20]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (25)
  • HTML views (44)
  • Cited by (0)

[Back to Top]