• Previous Article
    Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation
  • DCDS-S Home
  • This Issue
  • Next Article
    Local meshless differential quadrature collocation method for time-fractional PDEs
October  2020, 13(10): 2655-2665. doi: 10.3934/dcdss.2020225

Conservation laws and line soliton solutions of a family of modified KP equations

1. 

Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S3A1, Canada

2. 

Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, Cádiz, 11510, Spain

Received  February 2019 Revised  July 2019 Published  December 2019

A family of modified Kadomtsev-Petviashvili equations (mKP) in 2+1 dimensions is studied. This family includes the integrable mKP equation when the coefficients of the nonlinear terms and the transverse dispersion term satisfy an algebraic condition. The explicit line soliton solution and all conservation laws of low order are derived for all equations in the family and compared to their counterparts in the integrable case.

Citation: Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225
References:
[1]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.  doi: 10.1017/S0022112079000835.  Google Scholar

[2]

S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.   Google Scholar

[3]

S. C. Anco, Conservation laws of scaling-invariant field equations, J. Phys. A: Math. and Gen., 36 (2003), 8623-8638.  doi: 10.1088/0305-4470/36/32/305.  Google Scholar

[4]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. J. Appl. Math., 41 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[5]

S. C. AncoM. L. Gandarias and E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393-1411.  doi: 10.4213/tmf9483.  Google Scholar

[6]

G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010. doi: 10.1007/978-0-387-68028-6.  Google Scholar

[7]

Y. Z. Chen and P. L.-F. Liu, A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level, Wave Motion, 27 (1998), 321-339.  doi: 10.1016/S0165-2125(97)00057-7.  Google Scholar

[8]

G. C. Das and J. Sarma, Evolution of solitary wave in multicomponent plasmas, Chaos, Solitons and Fractals, 9 (1998), 901-911.  doi: 10.1016/S0960-0779(97)00170-7.  Google Scholar

[9]

F. GesztesyH. HoldenE. Saab and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal., 98 (1991), 211-228.  doi: 10.1016/0022-1236(91)90096-N.  Google Scholar

[10]

B. B. Kadomstev and V. I. Petviashvili, On the stability of waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.   Google Scholar

[11]

B. Konopel'chenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in $2+1$ dimensions, Phys. Lett. A, 102 (1984), 15-17.  doi: 10.1016/0375-9601(84)90442-0.  Google Scholar

[12]

B. G. Konopel'chenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Studies in Applied Math., 86 (1992), 219-268.  doi: 10.1002/sapm1992863219.  Google Scholar

[13]

R. Naz, Z. Ali and I. Naeem, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem, Abstract and Applied Analysis, (2013), Art. ID 340564, 11 pp. doi: 10.1155/2013/340564.  Google Scholar

[14]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[15]

E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear $p$-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.  doi: 10.1016/j.jmaa.2017.03.050.  Google Scholar

[16]

V. Veerakumar and M. Daniel, Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton, Math. Comput. Simulat., 62 (2003), 163-169.  doi: 10.1016/S0378-4754(02)00176-3.  Google Scholar

[17]

T. Wolf, A comparison of four approaches to the calculation of conservation laws, Euro. J. Appl. Math., 13 (2002), 129-152.  doi: 10.1017/S0956792501004715.  Google Scholar

[18]

X. S. ZhaoW. XuH. B. Jia and H. X. Zhou, Solitary wave solutions for the modified Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34 (2007), 465-475.  doi: 10.1016/j.chaos.2006.03.046.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech., 92 (1979), 691-715.  doi: 10.1017/S0022112079000835.  Google Scholar

[2]

S. C. Anco, Generalization of Noether's theorem in modern form to non-variational partial differential equations, Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, Fields Inst. Commun., Springer, New York, 79 (2017), 119-182.   Google Scholar

[3]

S. C. Anco, Conservation laws of scaling-invariant field equations, J. Phys. A: Math. and Gen., 36 (2003), 8623-8638.  doi: 10.1088/0305-4470/36/32/305.  Google Scholar

[4]

S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Euro. J. Appl. Math., 41 (2002), 567-585.  doi: 10.1017/S0956792501004661.  Google Scholar

[5]

S. C. AncoM. L. Gandarias and E. Recio, Conservation laws, symmetries, and line soliton solutions of generalized KP and Boussinesq equations with $p$-power nonlinearities in two dimensions, Theor. Math. Phys., 197 (2018), 1393-1411.  doi: 10.4213/tmf9483.  Google Scholar

[6]

G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168. Springer, New York, 2010. doi: 10.1007/978-0-387-68028-6.  Google Scholar

[7]

Y. Z. Chen and P. L.-F. Liu, A generalized modified Kadomtsev-Petviashvili equation for interfacial wave propagation near the critical depth level, Wave Motion, 27 (1998), 321-339.  doi: 10.1016/S0165-2125(97)00057-7.  Google Scholar

[8]

G. C. Das and J. Sarma, Evolution of solitary wave in multicomponent plasmas, Chaos, Solitons and Fractals, 9 (1998), 901-911.  doi: 10.1016/S0960-0779(97)00170-7.  Google Scholar

[9]

F. GesztesyH. HoldenE. Saab and B. Simon, Explicit construction of solutions of the modified Kadomtsev-Petviashvili equation, J. Funct. Anal., 98 (1991), 211-228.  doi: 10.1016/0022-1236(91)90096-N.  Google Scholar

[10]

B. B. Kadomstev and V. I. Petviashvili, On the stability of waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539-541.   Google Scholar

[11]

B. Konopel'chenko and V. G. Dubrovsky, Some new integrable nonlinear evolution equations in $2+1$ dimensions, Phys. Lett. A, 102 (1984), 15-17.  doi: 10.1016/0375-9601(84)90442-0.  Google Scholar

[12]

B. G. Konopel'chenko and V. G. Dubrovsky, Inverse spectral transform for the modified Kadomtsev-Petviashvili equation, Studies in Applied Math., 86 (1992), 219-268.  doi: 10.1002/sapm1992863219.  Google Scholar

[13]

R. Naz, Z. Ali and I. Naeem, Reductions and new exact solutions of ZK, Gardner KP, and modified KP equations via generalized double reduction theorem, Abstract and Applied Analysis, (2013), Art. ID 340564, 11 pp. doi: 10.1155/2013/340564.  Google Scholar

[14]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition. Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[15]

E. Recio and S. C. Anco, Conservation laws and symmetries of radial generalized nonlinear $p$-Laplacian evolution equations, J. Math. Anal. Appl., 452 (2017), 1229-1261.  doi: 10.1016/j.jmaa.2017.03.050.  Google Scholar

[16]

V. Veerakumar and M. Daniel, Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton, Math. Comput. Simulat., 62 (2003), 163-169.  doi: 10.1016/S0378-4754(02)00176-3.  Google Scholar

[17]

T. Wolf, A comparison of four approaches to the calculation of conservation laws, Euro. J. Appl. Math., 13 (2002), 129-152.  doi: 10.1017/S0956792501004715.  Google Scholar

[18]

X. S. ZhaoW. XuH. B. Jia and H. X. Zhou, Solitary wave solutions for the modified Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34 (2007), 465-475.  doi: 10.1016/j.chaos.2006.03.046.  Google Scholar

Figure 1.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (40)
Figure 2.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (40) in the defocussing case ($ \sigma_1 = -1 $)
Figure 3.  Profile of the mKP line soliton (39) and mKP family line soliton (40) and (45) for $ (h,w) = $ $ (1,1) $ (solid); $ (4,1) $ (long dash); $ (\tfrac{1}{5},1) $ (dash dot); $ (1,4) $ (dash); $ (1,\tfrac{1}{2}) $ (dot)
Figure 4.  Kinematically allowed region in $ (c,\theta) $ for the mKP family line soliton (45) in the defocussing case ($ \sigma_1 = -1 $)
[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[5]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[6]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[10]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[15]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[16]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[17]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[20]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (145)
  • HTML views (322)
  • Cited by (1)

[Back to Top]