-
Previous Article
Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media
- DCDS-S Home
- This Issue
-
Next Article
Comparison of modern heuristics on solving the phase stability testing problem
Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model
Dpt. of Mathematics Slovak University of Technology, Radlinské eho 11,810 05 Bratislava, Slovakia |
The aim of the paper is to study problem of financial derivatives pricing based on the idea of the Heston model introduced in [
References:
[1] |
B. Andreianov, F. Boyer and F. Hubert,
Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDEs, 23 (2007), 145-195.
doi: 10.1002/num.20170. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
R. Eymard, T. Gallouët and R. Herbin,
Finite volume method, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 7 (2000), 713-1020.
doi: 10.1086/phos.67.4.188705. |
[4] |
R. Eymard, A. Handlovičová and K. Mikula,
Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA Journal on Numerical Analysis, 31 (2011), 813-846.
doi: 10.1093/imanum/drq025. |
[5] |
G. Fichera,
Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30.
|
[6] |
A. Handlovičová, Discrete duality finite volume scheme for solving Heston model, Proccedings of ALGORITMY, (2016), 264–274. Google Scholar |
[7] |
A. Handlovičová, Stability estimates for discrete duality finite volume scheme for Heston model, Computer Methods in Materials Science, 17 (2017), 101-110. Google Scholar |
[8] |
A. Handlovičová and D. Kotorová,
Numerical analysis of a semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Kybernetika, 49 (2013), 829-854.
|
[9] |
S. L. Heston,
A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[10] |
P. Kútik, Numerical Solution of Partial Differential Equations and Their Application, Ph.D thesis, Slovak University of Technology in Bratislava, Slovakia, 2013. Google Scholar |
[11] |
P. Kútik and K. Mikula,
Diamond-cell finite volume scheme for the Heston model, Discrete and Continuous Dynamical Systems, 8 (2015), 913-931.
doi: 10.3934/dcdss.2015.8.913. |
[12] |
O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[13] |
O.A. Oleǐnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, (1971), 7–252. |
show all references
References:
[1] |
B. Andreianov, F. Boyer and F. Hubert,
Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDEs, 23 (2007), 145-195.
doi: 10.1002/num.20170. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
R. Eymard, T. Gallouët and R. Herbin,
Finite volume method, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 7 (2000), 713-1020.
doi: 10.1086/phos.67.4.188705. |
[4] |
R. Eymard, A. Handlovičová and K. Mikula,
Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA Journal on Numerical Analysis, 31 (2011), 813-846.
doi: 10.1093/imanum/drq025. |
[5] |
G. Fichera,
Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30.
|
[6] |
A. Handlovičová, Discrete duality finite volume scheme for solving Heston model, Proccedings of ALGORITMY, (2016), 264–274. Google Scholar |
[7] |
A. Handlovičová, Stability estimates for discrete duality finite volume scheme for Heston model, Computer Methods in Materials Science, 17 (2017), 101-110. Google Scholar |
[8] |
A. Handlovičová and D. Kotorová,
Numerical analysis of a semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Kybernetika, 49 (2013), 829-854.
|
[9] |
S. L. Heston,
A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[10] |
P. Kútik, Numerical Solution of Partial Differential Equations and Their Application, Ph.D thesis, Slovak University of Technology in Bratislava, Slovakia, 2013. Google Scholar |
[11] |
P. Kútik and K. Mikula,
Diamond-cell finite volume scheme for the Heston model, Discrete and Continuous Dynamical Systems, 8 (2015), 913-931.
doi: 10.3934/dcdss.2015.8.913. |
[12] |
O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[13] |
O.A. Oleǐnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, (1971), 7–252. |
[0.5ex] 20 | 10 | 1 | 0.00318557 | 0.00329745 | 0.00318659 | 0.00318559 |
40 | 20 | 4 | 0.00206132 | 0.00211980 | 0.00206182 | 0.00206133 |
80 | 40 | 16 | 0.00151241 | 0.00156704 | 0.00151286 | 0.00151242 |
160 | 80 | 64 | 0.00125001 | 0.00130976 | 0.00125050 | 0.00125002 |
[0.5ex] 20 | 10 | 1 | 0.00318557 | 0.00329745 | 0.00318659 | 0.00318559 |
40 | 20 | 4 | 0.00206132 | 0.00211980 | 0.00206182 | 0.00206133 |
80 | 40 | 16 | 0.00151241 | 0.00156704 | 0.00151286 | 0.00151242 |
160 | 80 | 64 | 0.00125001 | 0.00130976 | 0.00125050 | 0.00125002 |
[0.5ex] 20 | 10 | 1 | 0.00377821 | 0.00371450 | 0.00377742 | 0.00377822 |
40 | 20 | 4 | 0.00269958 | 0.00264958 | 0.00269896 | 0.00269957 |
80 | 40 | 16 | 0.00199309 | 0.00197965 | 0.00199286 | 0.00199309 |
160 | 80 | 64 | 0.00155891 | 0.00157838 | 0.00155904 | 0.00155891 |
[0.5ex] 20 | 10 | 1 | 0.00377821 | 0.00371450 | 0.00377742 | 0.00377822 |
40 | 20 | 4 | 0.00269958 | 0.00264958 | 0.00269896 | 0.00269957 |
80 | 40 | 16 | 0.00199309 | 0.00197965 | 0.00199286 | 0.00199309 |
160 | 80 | 64 | 0.00155891 | 0.00157838 | 0.00155904 | 0.00155891 |
[1] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[2] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[3] |
Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031 |
[4] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[5] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[6] |
Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021057 |
[7] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[8] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[9] |
Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032 |
[10] |
Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021003 |
[11] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[12] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[13] |
Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051 |
[14] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[15] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[16] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[17] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021049 |
[18] |
Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021046 |
[19] |
Kai Li, Tao Zhou, Bohai Liu. Pricing new and remanufactured products based on customer purchasing behavior. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021043 |
[20] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]