-
Previous Article
Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media
- DCDS-S Home
- This Issue
-
Next Article
Comparison of modern heuristics on solving the phase stability testing problem
Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model
Dpt. of Mathematics Slovak University of Technology, Radlinské eho 11,810 05 Bratislava, Slovakia |
The aim of the paper is to study problem of financial derivatives pricing based on the idea of the Heston model introduced in [
References:
[1] |
B. Andreianov, F. Boyer and F. Hubert,
Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDEs, 23 (2007), 145-195.
doi: 10.1002/num.20170. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
R. Eymard, T. Gallouët and R. Herbin,
Finite volume method, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 7 (2000), 713-1020.
doi: 10.1086/phos.67.4.188705. |
[4] |
R. Eymard, A. Handlovičová and K. Mikula,
Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA Journal on Numerical Analysis, 31 (2011), 813-846.
doi: 10.1093/imanum/drq025. |
[5] |
G. Fichera,
Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30.
|
[6] |
A. Handlovičová, Discrete duality finite volume scheme for solving Heston model, Proccedings of ALGORITMY, (2016), 264–274. Google Scholar |
[7] |
A. Handlovičová, Stability estimates for discrete duality finite volume scheme for Heston model, Computer Methods in Materials Science, 17 (2017), 101-110. Google Scholar |
[8] |
A. Handlovičová and D. Kotorová,
Numerical analysis of a semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Kybernetika, 49 (2013), 829-854.
|
[9] |
S. L. Heston,
A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[10] |
P. Kútik, Numerical Solution of Partial Differential Equations and Their Application, Ph.D thesis, Slovak University of Technology in Bratislava, Slovakia, 2013. Google Scholar |
[11] |
P. Kútik and K. Mikula,
Diamond-cell finite volume scheme for the Heston model, Discrete and Continuous Dynamical Systems, 8 (2015), 913-931.
doi: 10.3934/dcdss.2015.8.913. |
[12] |
O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[13] |
O.A. Oleǐnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, (1971), 7–252. |
show all references
References:
[1] |
B. Andreianov, F. Boyer and F. Hubert,
Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDEs, 23 (2007), 145-195.
doi: 10.1002/num.20170. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
R. Eymard, T. Gallouët and R. Herbin,
Finite volume method, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 7 (2000), 713-1020.
doi: 10.1086/phos.67.4.188705. |
[4] |
R. Eymard, A. Handlovičová and K. Mikula,
Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA Journal on Numerical Analysis, 31 (2011), 813-846.
doi: 10.1093/imanum/drq025. |
[5] |
G. Fichera,
Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30.
|
[6] |
A. Handlovičová, Discrete duality finite volume scheme for solving Heston model, Proccedings of ALGORITMY, (2016), 264–274. Google Scholar |
[7] |
A. Handlovičová, Stability estimates for discrete duality finite volume scheme for Heston model, Computer Methods in Materials Science, 17 (2017), 101-110. Google Scholar |
[8] |
A. Handlovičová and D. Kotorová,
Numerical analysis of a semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Kybernetika, 49 (2013), 829-854.
|
[9] |
S. L. Heston,
A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[10] |
P. Kútik, Numerical Solution of Partial Differential Equations and Their Application, Ph.D thesis, Slovak University of Technology in Bratislava, Slovakia, 2013. Google Scholar |
[11] |
P. Kútik and K. Mikula,
Diamond-cell finite volume scheme for the Heston model, Discrete and Continuous Dynamical Systems, 8 (2015), 913-931.
doi: 10.3934/dcdss.2015.8.913. |
[12] |
O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968. |
[13] |
O.A. Oleǐnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, (1971), 7–252. |
[0.5ex] 20 | 10 | 1 | 0.00318557 | 0.00329745 | 0.00318659 | 0.00318559 |
40 | 20 | 4 | 0.00206132 | 0.00211980 | 0.00206182 | 0.00206133 |
80 | 40 | 16 | 0.00151241 | 0.00156704 | 0.00151286 | 0.00151242 |
160 | 80 | 64 | 0.00125001 | 0.00130976 | 0.00125050 | 0.00125002 |
[0.5ex] 20 | 10 | 1 | 0.00318557 | 0.00329745 | 0.00318659 | 0.00318559 |
40 | 20 | 4 | 0.00206132 | 0.00211980 | 0.00206182 | 0.00206133 |
80 | 40 | 16 | 0.00151241 | 0.00156704 | 0.00151286 | 0.00151242 |
160 | 80 | 64 | 0.00125001 | 0.00130976 | 0.00125050 | 0.00125002 |
[0.5ex] 20 | 10 | 1 | 0.00377821 | 0.00371450 | 0.00377742 | 0.00377822 |
40 | 20 | 4 | 0.00269958 | 0.00264958 | 0.00269896 | 0.00269957 |
80 | 40 | 16 | 0.00199309 | 0.00197965 | 0.00199286 | 0.00199309 |
160 | 80 | 64 | 0.00155891 | 0.00157838 | 0.00155904 | 0.00155891 |
[0.5ex] 20 | 10 | 1 | 0.00377821 | 0.00371450 | 0.00377742 | 0.00377822 |
40 | 20 | 4 | 0.00269958 | 0.00264958 | 0.00269896 | 0.00269957 |
80 | 40 | 16 | 0.00199309 | 0.00197965 | 0.00199286 | 0.00199309 |
160 | 80 | 64 | 0.00155891 | 0.00157838 | 0.00155904 | 0.00155891 |
[1] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[2] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[3] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
[4] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[5] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[6] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[7] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[8] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[9] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[10] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[11] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[12] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[13] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[14] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[15] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[16] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[17] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[18] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[19] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[20] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]