American Institute of Mathematical Sciences

• Previous Article
Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media
• DCDS-S Home
• This Issue
• Next Article
Comparison of modern heuristics on solving the phase stability testing problem
March  2021, 14(3): 1181-1195. doi: 10.3934/dcdss.2020226

Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model

 Dpt. of Mathematics Slovak University of Technology, Radlinské eho 11,810 05 Bratislava, Slovakia

* Corresponding authors:Matúš Tibenský

Received  December 2018 Revised  September 2019 Published  March 2021 Early access  December 2019

Fund Project: Authors are supported by grants APVV 15-0522 and VEGA 1/0728/15

The aim of the paper is to study problem of financial derivatives pricing based on the idea of the Heston model introduced in [9]. Following the approach stated in [6] and in [7] we construct the regularised version of the Heston model and the discrete duality finite volume (DDFV) scheme for this model. The numerical analysis is performed for this scheme and stability estimates on the discrete solution and the discrete gradient are obtained. In addition the convergence of the DDFV scheme to the weak solution of the regularised Heston model is proven. The numerical experiments are provided in the end of the paper to test the regularisation parameter impact.

Citation: Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226
References:

show all references

References:
Results for the regularised and the original DDFV scheme comparison, Experiment Nr. 1
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00318557 0.00329745 0.00318659 0.00318559 40 20 4 0.00206132 0.00211980 0.00206182 0.00206133 80 40 16 0.00151241 0.00156704 0.00151286 0.00151242 160 80 64 0.00125001 0.00130976 0.00125050 0.00125002
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00318557 0.00329745 0.00318659 0.00318559 40 20 4 0.00206132 0.00211980 0.00206182 0.00206133 80 40 16 0.00151241 0.00156704 0.00151286 0.00151242 160 80 64 0.00125001 0.00130976 0.00125050 0.00125002
Results for the regularised and the original DDFV scheme comparison, Experiment Nr. 2
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00377821 0.00371450 0.00377742 0.00377822 40 20 4 0.00269958 0.00264958 0.00269896 0.00269957 80 40 16 0.00199309 0.00197965 0.00199286 0.00199309 160 80 64 0.00155891 0.00157838 0.00155904 0.00155891
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00377821 0.00371450 0.00377742 0.00377822 40 20 4 0.00269958 0.00264958 0.00269896 0.00269957 80 40 16 0.00199309 0.00197965 0.00199286 0.00199309 160 80 64 0.00155891 0.00157838 0.00155904 0.00155891
 [1] Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195 [2] Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913 [3] Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006 [4] Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024 [5] Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354 [6] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 [7] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [8] Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2557-2570. doi: 10.3934/dcdss.2020400 [9] Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1653-1682. doi: 10.3934/dcdss.2020097 [10] Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 [11] Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241 [12] Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152 [13] Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 [14] Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005 [15] Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002 [16] Francesca Biagini, Jacopo Mancin. Financial asset price bubbles under model uncertainty. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 14-. doi: 10.1186/s41546-017-0026-3 [17] Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006 [18] Yigui Ou, Wenjie Xu. A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021125 [19] Lucio Boccardo, Luigi Orsina. The duality method for mean field games systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2022021 [20] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

2020 Impact Factor: 2.425

Metrics

• HTML views (478)
• Cited by (0)

• on AIMS