doi: 10.3934/dcdss.2020226

Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model

Dpt. of Mathematics Slovak University of Technology, Radlinské eho 11,810 05 Bratislava, Slovakia

* Corresponding authors:Matúš Tibenský

Received  December 2018 Revised  September 2019 Published  December 2019

Fund Project: Authors are supported by grants APVV 15-0522 and VEGA 1/0728/15.

The aim of the paper is to study problem of financial derivatives pricing based on the idea of the Heston model introduced in [9]. Following the approach stated in [6] and in [7] we construct the regularised version of the Heston model and the discrete duality finite volume (DDFV) scheme for this model. The numerical analysis is performed for this scheme and stability estimates on the discrete solution and the discrete gradient are obtained. In addition the convergence of the DDFV scheme to the weak solution of the regularised Heston model is proven. The numerical experiments are provided in the end of the paper to test the regularisation parameter impact.

Citation: Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020226
References:
[1]

B. AndreianovF. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDEs, 23 (2007), 145-195.  doi: 10.1002/num.20170.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[3]

R. EymardT. Gallouët and R. Herbin, Finite volume method, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 7 (2000), 713-1020.  doi: 10.1086/phos.67.4.188705.  Google Scholar

[4]

R. EymardA. Handlovičová and K. Mikula, Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA Journal on Numerical Analysis, 31 (2011), 813-846.  doi: 10.1093/imanum/drq025.  Google Scholar

[5]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30.   Google Scholar

[6]

A. Handlovičová, Discrete duality finite volume scheme for solving Heston model, Proccedings of ALGORITMY, (2016), 264–274. Google Scholar

[7]

A. Handlovičová, Stability estimates for discrete duality finite volume scheme for Heston model, Computer Methods in Materials Science, 17 (2017), 101-110.   Google Scholar

[8]

A. Handlovičová and D. Kotorová, Numerical analysis of a semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Kybernetika, 49 (2013), 829-854.   Google Scholar

[9]

S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[10]

P. Kútik, Numerical Solution of Partial Differential Equations and Their Application, Ph.D thesis, Slovak University of Technology in Bratislava, Slovakia, 2013. Google Scholar

[11]

P. Kútik and K. Mikula, Diamond-cell finite volume scheme for the Heston model, Discrete and Continuous Dynamical Systems, 8 (2015), 913-931.  doi: 10.3934/dcdss.2015.8.913.  Google Scholar

[12]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.  Google Scholar

[13]

O.A. Oleǐnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, (1971), 7–252.  Google Scholar

show all references

References:
[1]

B. AndreianovF. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type problems on general 2D meshes, Numerical Methods for PDEs, 23 (2007), 145-195.  doi: 10.1002/num.20170.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[3]

R. EymardT. Gallouët and R. Herbin, Finite volume method, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 7 (2000), 713-1020.  doi: 10.1086/phos.67.4.188705.  Google Scholar

[4]

R. EymardA. Handlovičová and K. Mikula, Study of a finite volume scheme for regularised mean curvature flow level set equation, IMA Journal on Numerical Analysis, 31 (2011), 813-846.  doi: 10.1093/imanum/drq025.  Google Scholar

[5]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis. Mat. Nat., 5 (1956), 1-30.   Google Scholar

[6]

A. Handlovičová, Discrete duality finite volume scheme for solving Heston model, Proccedings of ALGORITMY, (2016), 264–274. Google Scholar

[7]

A. Handlovičová, Stability estimates for discrete duality finite volume scheme for Heston model, Computer Methods in Materials Science, 17 (2017), 101-110.   Google Scholar

[8]

A. Handlovičová and D. Kotorová, Numerical analysis of a semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D, Kybernetika, 49 (2013), 829-854.   Google Scholar

[9]

S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[10]

P. Kútik, Numerical Solution of Partial Differential Equations and Their Application, Ph.D thesis, Slovak University of Technology in Bratislava, Slovakia, 2013. Google Scholar

[11]

P. Kútik and K. Mikula, Diamond-cell finite volume scheme for the Heston model, Discrete and Continuous Dynamical Systems, 8 (2015), 913-931.  doi: 10.3934/dcdss.2015.8.913.  Google Scholar

[12]

O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.  Google Scholar

[13]

O.A. Oleǐnik and E. V. Radkevič, Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, Akad. Nauk SSSR Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, (1971), 7–252.  Google Scholar

Table 1.  Results for the regularised and the original DDFV scheme comparison, Experiment Nr. 1
$ N_x $ $ N_y $ $ N_{ts} $ $ L_2 D $ $ L_2 R, \epsilon = 10^{-2} $ $ L_2 R, \epsilon = 10^{-4} $ $ L_2 R, \epsilon = 10^{-6} $
[0.5ex] 20 10 1 0.00318557 0.00329745 0.00318659 0.00318559
40 20 4 0.00206132 0.00211980 0.00206182 0.00206133
80 40 16 0.00151241 0.00156704 0.00151286 0.00151242
160 80 64 0.00125001 0.00130976 0.00125050 0.00125002
$ N_x $ $ N_y $ $ N_{ts} $ $ L_2 D $ $ L_2 R, \epsilon = 10^{-2} $ $ L_2 R, \epsilon = 10^{-4} $ $ L_2 R, \epsilon = 10^{-6} $
[0.5ex] 20 10 1 0.00318557 0.00329745 0.00318659 0.00318559
40 20 4 0.00206132 0.00211980 0.00206182 0.00206133
80 40 16 0.00151241 0.00156704 0.00151286 0.00151242
160 80 64 0.00125001 0.00130976 0.00125050 0.00125002
Table 2.  Results for the regularised and the original DDFV scheme comparison, Experiment Nr. 2
$ N_x $ $ N_y $ $ N_{ts} $ $ L_2 D $ $ L_2 R, \epsilon = 10^{-2} $ $ L_2 R, \epsilon = 10^{-4} $ $ L_2 R, \epsilon = 10^{-6} $
[0.5ex] 20 10 1 0.00377821 0.00371450 0.00377742 0.00377822
40 20 4 0.00269958 0.00264958 0.00269896 0.00269957
80 40 16 0.00199309 0.00197965 0.00199286 0.00199309
160 80 64 0.00155891 0.00157838 0.00155904 0.00155891
$ N_x $ $ N_y $ $ N_{ts} $ $ L_2 D $ $ L_2 R, \epsilon = 10^{-2} $ $ L_2 R, \epsilon = 10^{-4} $ $ L_2 R, \epsilon = 10^{-6} $
[0.5ex] 20 10 1 0.00377821 0.00371450 0.00377742 0.00377822
40 20 4 0.00269958 0.00264958 0.00269896 0.00269957
80 40 16 0.00199309 0.00197965 0.00199286 0.00199309
160 80 64 0.00155891 0.00157838 0.00155904 0.00155891
[1]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[2]

Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913

[3]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006

[4]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[5]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[6]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[7]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[8]

Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020400

[9]

Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1653-1682. doi: 10.3934/dcdss.2020097

[10]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[11]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[12]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[13]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[14]

Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002

[15]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[16]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[17]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[18]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[19]

Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939

[20]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (47)
  • HTML views (224)
  • Cited by (0)

Other articles
by authors

[Back to Top]