# American Institute of Mathematical Sciences

• Previous Article
Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media
• DCDS-S Home
• This Issue
• Next Article
Comparison of modern heuristics on solving the phase stability testing problem
March  2021, 14(3): 1181-1195. doi: 10.3934/dcdss.2020226

## Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model

 Dpt. of Mathematics Slovak University of Technology, Radlinské eho 11,810 05 Bratislava, Slovakia

* Corresponding authors:Matúš Tibenský

Received  December 2018 Revised  September 2019 Published  December 2019

Fund Project: Authors are supported by grants APVV 15-0522 and VEGA 1/0728/15

The aim of the paper is to study problem of financial derivatives pricing based on the idea of the Heston model introduced in [9]. Following the approach stated in [6] and in [7] we construct the regularised version of the Heston model and the discrete duality finite volume (DDFV) scheme for this model. The numerical analysis is performed for this scheme and stability estimates on the discrete solution and the discrete gradient are obtained. In addition the convergence of the DDFV scheme to the weak solution of the regularised Heston model is proven. The numerical experiments are provided in the end of the paper to test the regularisation parameter impact.

Citation: Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226
##### References:

show all references

##### References:
Results for the regularised and the original DDFV scheme comparison, Experiment Nr. 1
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00318557 0.00329745 0.00318659 0.00318559 40 20 4 0.00206132 0.00211980 0.00206182 0.00206133 80 40 16 0.00151241 0.00156704 0.00151286 0.00151242 160 80 64 0.00125001 0.00130976 0.00125050 0.00125002
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00318557 0.00329745 0.00318659 0.00318559 40 20 4 0.00206132 0.00211980 0.00206182 0.00206133 80 40 16 0.00151241 0.00156704 0.00151286 0.00151242 160 80 64 0.00125001 0.00130976 0.00125050 0.00125002
Results for the regularised and the original DDFV scheme comparison, Experiment Nr. 2
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00377821 0.00371450 0.00377742 0.00377822 40 20 4 0.00269958 0.00264958 0.00269896 0.00269957 80 40 16 0.00199309 0.00197965 0.00199286 0.00199309 160 80 64 0.00155891 0.00157838 0.00155904 0.00155891
 $N_x$ $N_y$ $N_{ts}$ $L_2 D$ $L_2 R, \epsilon = 10^{-2}$ $L_2 R, \epsilon = 10^{-4}$ $L_2 R, \epsilon = 10^{-6}$ [0.5ex] 20 10 1 0.00377821 0.00371450 0.00377742 0.00377822 40 20 4 0.00269958 0.00264958 0.00269896 0.00269957 80 40 16 0.00199309 0.00197965 0.00199286 0.00199309 160 80 64 0.00155891 0.00157838 0.00155904 0.00155891
 [1] Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 [2] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 [3] Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 [4] Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 [5] Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 [6] Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018 [7] Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339 [8] Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 [9] Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 [10] Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033 [11] Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 [12] Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319 [13] Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 [14] Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 [15] Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 [16] Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 [17] Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005 [18] Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176 [19] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 [20] Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables