doi: 10.3934/dcdss.2020228

Spatio-temporal coexistence in the cross-diffusion competition system

1. 

Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadainishi Miyazaki, 889-2192, Japan

2. 

Graduate School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan

* Corresponding author: Shunsuke Kobayashi

Received  January 2019 Revised  September 2019 Published  December 2019

We study a two component cross-diffusion competition system which describes the population dynamics between two biological species. Since the cross-diffusion competition system possesses the so-called population pressure effects, a variety of solution behaviors can be exhibited compared with the classical diffusion competition system. In particular, we discuss on the existence of spatially non-constant time periodic solutions. Applying the center manifold theory and the standard normal form theory, the cross-diffusion competition system is reduced to a two dimensional dynamical system around a doubly degenerate point. As a result, we show the existence of stable time periodic solutions in the system. This means spatio-temporal coexistence between two biological species.

Citation: Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020228
References:
[1]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29 (1988), 257-282.  doi: 10.1016/0167-2789(88)90032-2.  Google Scholar

[2]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49 (1988), 676-691.  doi: 10.1137/0149039.  Google Scholar

[3]

J. Carr, Application of Centre Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981.  Google Scholar

[4]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.  doi: 10.1137/S0036141003427798.  Google Scholar

[5]

Y. S. ChoiR. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.  doi: 10.3934/dcds.2004.10.719.  Google Scholar

[6]

F. Conforto and L. Desvillettes, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusion, Commun. Math. Sci., 12 (2014), 457-472.  doi: 10.4310/CMS.2014.v12.n3.a3.  Google Scholar

[7]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59.  doi: 10.1016/j.jmaa.2015.03.078.  Google Scholar

[8]

E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations., Google Scholar

[9]

H. FujiiM. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Physica D, 5 (1982), 1-42.  doi: 10.1016/0167-2789(82)90048-3.  Google Scholar

[10]

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamics Systems, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7.  Google Scholar

[11]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflow, Nonlinear Partial Differential Equations (Durham, N.H., 1982), Contemp. Math., Amer. Math. Soc., Providence, 17 (1983), 267-285.   Google Scholar

[12]

M. IidaM. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[13]

H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.  doi: 10.32917/hmj/1220619462.  Google Scholar

[14]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.  doi: 10.32917/hmj/1206392779.  Google Scholar

[15]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential equations, 58 (1985), 15-21.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[16]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[17]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.  doi: 10.1080/00036811003627534.  Google Scholar

[18]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[20]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999) 157–190. doi: 10.1006/jdeq.1998.3559.  Google Scholar

[21]

Y. LouW.-M. Ni and Y. P. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.  doi: 10.3934/dcds.1998.4.193.  Google Scholar

[22]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[23]

Y. Low and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.  doi: 10.1080/03605302.2015.1052882.  Google Scholar

[24]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.  doi: 10.2977/prims/1195182020.  Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.  doi: 10.1007/BF00276035.  Google Scholar

[26]

M. MimuraY. NishiuraA. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.  doi: 10.32917/hmj/1206133048.  Google Scholar

[27]

W.-M. NiY. P. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[28]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[29]

Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.  doi: 10.1016/j.jde.2004.08.015.  Google Scholar

[30]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D, 29 (1988), 257-282.  doi: 10.1016/0167-2789(88)90032-2.  Google Scholar

[2]

D. ArmbrusterJ. Guckenheimer and P. Holmes, Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49 (1988), 676-691.  doi: 10.1137/0149039.  Google Scholar

[3]

J. Carr, Application of Centre Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981.  Google Scholar

[4]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion, SIAM J. Math. Anal., 36 (2004), 301-322.  doi: 10.1137/S0036141003427798.  Google Scholar

[5]

Y. S. ChoiR. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.  doi: 10.3934/dcds.2004.10.719.  Google Scholar

[6]

F. Conforto and L. Desvillettes, Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusion, Commun. Math. Sci., 12 (2014), 457-472.  doi: 10.4310/CMS.2014.v12.n3.a3.  Google Scholar

[7]

L. Desvillettes and A. Trescases, New results for triangular reaction cross diffusion system, J. Math. Anal. Appl., 430 (2015), 32-59.  doi: 10.1016/j.jmaa.2015.03.078.  Google Scholar

[8]

E. J. Doedel, B. E. Oldman, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov, R. Paffenroth, B. Sandstede, X. Wang and C. Zhang, AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations., Google Scholar

[9]

H. FujiiM. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Physica D, 5 (1982), 1-42.  doi: 10.1016/0167-2789(82)90048-3.  Google Scholar

[10]

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimentional Dynamics Systems, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7.  Google Scholar

[11]

M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflow, Nonlinear Partial Differential Equations (Durham, N.H., 1982), Contemp. Math., Amer. Math. Soc., Providence, 17 (1983), 267-285.   Google Scholar

[12]

M. IidaM. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[13]

H. Izuhara and M. Mimura, Reaction-diffusion system approximation to the cross-diffusion competition system, Hiroshima Math. J., 38 (2008), 315-347.  doi: 10.32917/hmj/1220619462.  Google Scholar

[14]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics, Hiroshima Math. J., 23 (1993), 509-536.  doi: 10.32917/hmj/1206392779.  Google Scholar

[15]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential equations, 58 (1985), 15-21.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[16]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[17]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 89 (2010), 1037-1066.  doi: 10.1080/00036811003627534.  Google Scholar

[18]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[20]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach, J. Differential Equations, 154 (1999) 157–190. doi: 10.1006/jdeq.1998.3559.  Google Scholar

[21]

Y. LouW.-M. Ni and Y. P. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.  doi: 10.3934/dcds.1998.4.193.  Google Scholar

[22]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Contin. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[23]

Y. Low and M. Winkler, Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates, Comm. Partial Differential Equations, 40 (2015), 1905-1941.  doi: 10.1080/03605302.2015.1052882.  Google Scholar

[24]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.  doi: 10.2977/prims/1195182020.  Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.  doi: 10.1007/BF00276035.  Google Scholar

[26]

M. MimuraY. NishiuraA. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.  doi: 10.32917/hmj/1206133048.  Google Scholar

[27]

W.-M. NiY. P. Wu and Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271-5298.  doi: 10.3934/dcds.2014.34.5271.  Google Scholar

[28]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[29]

Y. P. Wu, The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations, 213 (2005), 289-340.  doi: 10.1016/j.jde.2004.08.015.  Google Scholar

[30]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

Figure 1.  Neutral stability curves in $ (d,\gamma) $-plane. The horizontal axis and the vertical axis mean the value $ d $ and the value $ \gamma $, respectively. The parameter values are $ r_1 = 5 $, $ r_2 = 2 $, $ a_1 = 3 $, $ a_2 = 1 $, $ b_1 = 1 $, $ b_2 = 3 $ and $ L = 1 $
Figure 2.  Global bifurcation diagrams for (3) with (4) when the value of $ \gamma $ varies. The horizontal axis and the vertical axis mean the value $ d $ and the boundary value $ u(0) $, respectively. Solid curves and dashed curves mean stable branches and unstable ones, respectively. The marks $ \square $ and $ \blacksquare $ indicate a pitchfork bifurcation point and a Hopf bifurcation point, respectively. The parameter values are the same as the ones in Figure 1
Figure 3.  (a) Enlarged view of the bifurcation diagram for $ \gamma = 1.7 $ in Figure 2 in the neighborhood of the Hopf bifurcation points. The marks $ \bullet $ indicate stable periodic solution branch. The parameter values are the same as the ones in Figure 2. (b) A periodic solution at $ d = 0.01528 $
[1]

Salomé Martínez, Wei-Ming Ni. Periodic solutions for a 3x 3 competitive system with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 725-746. doi: 10.3934/dcds.2006.15.725

[2]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[3]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[4]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[5]

Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : ⅰ-ⅰ. doi: 10.3934/dcdss.20202i

[6]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[7]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[8]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[9]

Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

[10]

Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641

[11]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[12]

F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239

[13]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[14]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[15]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[16]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[17]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[18]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[19]

Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

[20]

Yanxia Wu, Yaping Wu. Existence of traveling waves with transition layers for some degenerate cross-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 911-934. doi: 10.3934/cpaa.2012.11.911

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (30)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]