
-
Previous Article
Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction
- DCDS-S Home
- This Issue
-
Next Article
Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows
Reflection of a self-propelling rigid disk from a boundary
1. | Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan |
2. | Department of Mathematical Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan |
3. | Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan |
A system of ordinary differential equations that describes the motion of a self-propelling rigid disk is studied. In this system, the disk moves along a straight-line and reflects from a boundary. Interestingly, numerical simulation shows that the angle of reflection is greater than that of incidence. The purpose of this study is to present a mathematical proof for this attractive phenomenon. Moreover, the reflection law is numerically investigated. Finally, existence and asymptotic stability of a square-shaped closed orbit for billiards in square table with inelastic reflection law are discussed.
References:
[1] |
X. F. Chen, S.-I. Ei and M. Mimura,
Self-motion of camphor discs. Model and analysis, Netw. Heterog. Media, 4 (2009), 1-18.
doi: 10.3934/nhm.2009.4.1. |
[2] |
S.-I. Ei, K. Ikeda, M. Nagayama and A. Tomoeda,
Reduced model from a reaction-diffusion system of collective motion of camphor boats, Discrete Contin. Dyn. Syst. S, 8 (2015), 847-856.
doi: 10.3934/dcdss.2015.8.847. |
[3] |
S.-I. Ei, H. Kitahata, Y. Koyano and M. Nagayama,
Interaction of non-radially symmetric camphor particles, Phys. D, 366 (2018), 10-26.
doi: 10.1016/j.physd.2017.11.004. |
[4] |
S.-I. Ei, M. Mimura and M. Nagayama, Interacting spots in reaction diffusion systems, Discrete Contin. Dyn. Syst., 14 (2006) 31-62.
doi: 10.3934/dcds.2006.14.31. |
[5] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-540-78862-1. |
[6] |
J. D. Hunter,
Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9 (2007), 90-95.
doi: 10.1109/MCSE.2007.55. |
[7] |
K. Iida, H. Kitahata and M. Nagayama,
Theoretical study on the translation and rotation of an elliptic camphor particle, Phys. D, 272 (2014), 39-50.
doi: 10.1016/j.physd.2014.01.005. |
[8] |
Y. S. Ikura, E. Heisler, A. Awazu, H. Nishimori and S. Nakata, Collective motion of symmetric camphor papers in an annular water channel, Phys. Rev. E, 88 (2013), 012911.
doi: 10.1103/PhysRevE.88.012911. |
[9] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[10] |
J. Langham and D. Barkley, Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media, Chaos, 23 (2013), 013134, 9 pp.
doi: 10.1063/1.4793783. |
[11] |
M. Matsumoto, Analysis of the Particle Model Describing Motions of a Camphor, Master thesis, Hiroshima University, 2002. Google Scholar |
[12] |
T. Matsumoto, A Billiard Problem Under Nonlinear and Nonequilibrium Conditions, Master theses, Hiroshima University, 2003. Google Scholar |
[13] |
A. S. Mikhailov and V. Calenbuhr, From Cells to Societies: Models of Complex Coherent Action, Springer Series in Synergetics. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05062-0. |
[14] |
M. Mimura, T. Miyaji and I. Ohnishi,
A billiard problem in nonlinear and nonequilibrium systems, Hiroshima Math. J., 37 (2007), 343-384.
doi: 10.32917/hmj/1200529808. |
[15] |
T. Miyaji,
Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems, Phys. D, 340 (2017), 14-25.
doi: 10.1016/j.physd.2016.09.003. |
[16] |
T. Morihara, A Nonequilibrium Billiard Problem: Simulations and Analyses, Master theses, Hiroshima University, 2004. Google Scholar |
[17] |
M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima,
A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D: Nonlinear Phenomena, 194 (2004), 151-165.
doi: 10.1016/j.physd.2004.02.003. |
[18] |
S. Nakata and Y. Hayashima,
Spontaneous dancing of a camphor scraping, J. Chem. Soc., Faraday Trans., 94 (1998), 3655-3658.
doi: 10.1039/a806281a. |
[19] |
S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii and K. Yoshikawa,
Self-rotation of a camphor scraping on water: New insight into the old problem, Langmuir, 13 (1997), 4454-4458.
doi: 10.1021/la970196p. |
[20] |
S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu and T. Hasegawa,
Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments, Phys. Chem. Chem. Phys., 17 (2015), 10326-10338.
doi: 10.1039/C5CP00541H. |
[21] |
S. Nakata, V. Pimienta, I. Lagzi, H. Kitahata and N. J Suematsu, Self-organized Motion: Physicochemical Design based on Nonlinear Dynamics, Royal Society of Chemistry, 2018.
doi: 10.1039/9781788013499. |
[22] |
S. Protière, A. Boudaoud and Y. Couder,
Particle-wave association on a fluid interface, J. Fluid Mech., 554 (2006), 85-108.
doi: 10.1017/S0022112006009190. |
[23] |
R. J. Strutt,
Ⅳ. Measurements of the amount of oil necessary in order to check the motions of camphor upon water, Proc. R. Soc. Lond., 47 (1889), 286-291.
doi: 10.1098/rspl.1889.0099. |
[24] |
S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, 30. American Mathematical Society, Providence, RI, Mathematics Advanced Study Semesters, University Park, PA, 2005.
doi: 10.1090/stml/030. |
[25] |
S. Tanaka, Y. Sogabe and S. Nakata., Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface, Phys. Rev. E, 91 (2015), 032406.
doi: 10.1103/PhysRevE.91.032406. |
[26] |
O. Tange, GNU parallel - The command-line power tool, Login: The USENIX Magazine, (2011), 42-47. Google Scholar |
[27] |
C. Tomlinson,
Ⅱ. On the motions of camphor on the surface of water, Proc. Roy. Soc. London, 11 (1860), 575-577.
doi: 10.1098/rspl.1860.0124. |
[28] |
T. Williams and C. Kelley, Gnuplot homepage, (2018), http://gnuplot.info/. Google Scholar |
show all references
References:
[1] |
X. F. Chen, S.-I. Ei and M. Mimura,
Self-motion of camphor discs. Model and analysis, Netw. Heterog. Media, 4 (2009), 1-18.
doi: 10.3934/nhm.2009.4.1. |
[2] |
S.-I. Ei, K. Ikeda, M. Nagayama and A. Tomoeda,
Reduced model from a reaction-diffusion system of collective motion of camphor boats, Discrete Contin. Dyn. Syst. S, 8 (2015), 847-856.
doi: 10.3934/dcdss.2015.8.847. |
[3] |
S.-I. Ei, H. Kitahata, Y. Koyano and M. Nagayama,
Interaction of non-radially symmetric camphor particles, Phys. D, 366 (2018), 10-26.
doi: 10.1016/j.physd.2017.11.004. |
[4] |
S.-I. Ei, M. Mimura and M. Nagayama, Interacting spots in reaction diffusion systems, Discrete Contin. Dyn. Syst., 14 (2006) 31-62.
doi: 10.3934/dcds.2006.14.31. |
[5] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Second edition. Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-540-78862-1. |
[6] |
J. D. Hunter,
Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9 (2007), 90-95.
doi: 10.1109/MCSE.2007.55. |
[7] |
K. Iida, H. Kitahata and M. Nagayama,
Theoretical study on the translation and rotation of an elliptic camphor particle, Phys. D, 272 (2014), 39-50.
doi: 10.1016/j.physd.2014.01.005. |
[8] |
Y. S. Ikura, E. Heisler, A. Awazu, H. Nishimori and S. Nakata, Collective motion of symmetric camphor papers in an annular water channel, Phys. Rev. E, 88 (2013), 012911.
doi: 10.1103/PhysRevE.88.012911. |
[9] |
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-3978-7. |
[10] |
J. Langham and D. Barkley, Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media, Chaos, 23 (2013), 013134, 9 pp.
doi: 10.1063/1.4793783. |
[11] |
M. Matsumoto, Analysis of the Particle Model Describing Motions of a Camphor, Master thesis, Hiroshima University, 2002. Google Scholar |
[12] |
T. Matsumoto, A Billiard Problem Under Nonlinear and Nonequilibrium Conditions, Master theses, Hiroshima University, 2003. Google Scholar |
[13] |
A. S. Mikhailov and V. Calenbuhr, From Cells to Societies: Models of Complex Coherent Action, Springer Series in Synergetics. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05062-0. |
[14] |
M. Mimura, T. Miyaji and I. Ohnishi,
A billiard problem in nonlinear and nonequilibrium systems, Hiroshima Math. J., 37 (2007), 343-384.
doi: 10.32917/hmj/1200529808. |
[15] |
T. Miyaji,
Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems, Phys. D, 340 (2017), 14-25.
doi: 10.1016/j.physd.2016.09.003. |
[16] |
T. Morihara, A Nonequilibrium Billiard Problem: Simulations and Analyses, Master theses, Hiroshima University, 2004. Google Scholar |
[17] |
M. Nagayama, S. Nakata, Y. Doi and Y. Hayashima,
A theoretical and experimental study on the unidirectional motion of a camphor disk, Physica D: Nonlinear Phenomena, 194 (2004), 151-165.
doi: 10.1016/j.physd.2004.02.003. |
[18] |
S. Nakata and Y. Hayashima,
Spontaneous dancing of a camphor scraping, J. Chem. Soc., Faraday Trans., 94 (1998), 3655-3658.
doi: 10.1039/a806281a. |
[19] |
S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii and K. Yoshikawa,
Self-rotation of a camphor scraping on water: New insight into the old problem, Langmuir, 13 (1997), 4454-4458.
doi: 10.1021/la970196p. |
[20] |
S. Nakata, M. Nagayama, H. Kitahata, N. J. Suematsu and T. Hasegawa,
Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments, Phys. Chem. Chem. Phys., 17 (2015), 10326-10338.
doi: 10.1039/C5CP00541H. |
[21] |
S. Nakata, V. Pimienta, I. Lagzi, H. Kitahata and N. J Suematsu, Self-organized Motion: Physicochemical Design based on Nonlinear Dynamics, Royal Society of Chemistry, 2018.
doi: 10.1039/9781788013499. |
[22] |
S. Protière, A. Boudaoud and Y. Couder,
Particle-wave association on a fluid interface, J. Fluid Mech., 554 (2006), 85-108.
doi: 10.1017/S0022112006009190. |
[23] |
R. J. Strutt,
Ⅳ. Measurements of the amount of oil necessary in order to check the motions of camphor upon water, Proc. R. Soc. Lond., 47 (1889), 286-291.
doi: 10.1098/rspl.1889.0099. |
[24] |
S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, 30. American Mathematical Society, Providence, RI, Mathematics Advanced Study Semesters, University Park, PA, 2005.
doi: 10.1090/stml/030. |
[25] |
S. Tanaka, Y. Sogabe and S. Nakata., Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface, Phys. Rev. E, 91 (2015), 032406.
doi: 10.1103/PhysRevE.91.032406. |
[26] |
O. Tange, GNU parallel - The command-line power tool, Login: The USENIX Magazine, (2011), 42-47. Google Scholar |
[27] |
C. Tomlinson,
Ⅱ. On the motions of camphor on the surface of water, Proc. Roy. Soc. London, 11 (1860), 575-577.
doi: 10.1098/rspl.1860.0124. |
[28] |
T. Williams and C. Kelley, Gnuplot homepage, (2018), http://gnuplot.info/. Google Scholar |






[1] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[2] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[3] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[4] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[5] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[6] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[7] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[8] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[9] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[10] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[11] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[12] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[13] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[14] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[15] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[16] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[17] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[18] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[19] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[20] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]