[1]
|
D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, Journal de Mathématiques Pures et Appliquées, 86 (2006), 362-368.
doi: 10.1016/j.matpur.2006.06.005.
|
[2]
|
P. K. Das, Prediction model for storm surges in the Bay of Bengal, Nature, 239 (1972), 211-213.
doi: 10.1038/239211a0.
|
[3]
|
S. K. Debsarma, Simulations of storm surges in the Bay of Bengal, Marine Geodesy, 32 (2009), 178-198.
doi: 10.1080/01490410902869458.
|
[4]
|
B. Jonhs and A. Ali, The numerical modeling of storm surges in the Bay of Bengal, Quarterly Journal of the Royal Meteorological Society, 106 (1980), 1-18.
|
[5]
|
H. Kanayama and H. Dan, A finite element scheme for two-layer viscous shallow-water equations, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 163-191.
doi: 10.1007/BF03167549.
|
[6]
|
H. Kanayama and H. Dan, Tsunami propagation from the open sea to the coast, Tsunami, Chapter 4, IntechOpen, (2016), 61-72.
|
[7]
|
H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅰ. Derivation and conservation laws, Memoirs of Numerical Mathematics, (1981/82), 39-64.
|
[8]
|
H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅱ. A linearized system, Bulletin of University of Electro-Communications, 1 (1988), 347-355.
|
[9]
|
H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅲ. A finite element scheme, Bulletin of University of Electro-Communications, 2 (1989), 47-62.
|
[10]
|
C. Lucas, Cosine effect on shallow water equations and mathematical properties, Quarterly of Applied Mathematics, American Mathematical Society, 67 (2009), 283-310.
doi: 10.1090/S0033-569X-09-01113-0.
|
[11]
|
G. C. Paul and A. I. M. Ismail, Tide surge interaction model including air bubble effects for the coast of Bangladesh, Journal of the Franklin Institute, 349 (2012), 2530-2546.
doi: 10.1016/j.jfranklin.2012.08.003.
|
[12]
|
G. C. Paul and A. I. M. Ismail, Contribution of offshore islands in the prediction of water levels due to tide-surge interaction for the coastal region of Bangladesh, Natural Hazards, 65 (2013), 13-25.
doi: 10.1007/s11069-012-0341-z.
|
[13]
|
G. C. Paul, A. I. M. Ismail and M. F. Karim, Implementation of method of lines to predict water levels due to a storm along the coastal region of Bangladesh, Journal of Oceanography, 70 (2014), 199-210.
doi: 10.1007/s10872-014-0224-x.
|
[14]
|
G. C. Paul, M. M. Murshed, M. R. Haque, M. M. Rahman and A. Hoque, Development of a cylindrical polar coordinates shallow water storm surge model for the coast of Bangladesh, Journal of Coastal Conservation, 21 (2017), 951-966.
doi: 10.1007/s11852-017-0565-x.
|
[15]
|
G. C. Paul, S. Senthilkumar and R. Pria, Storm surge simulation along the Meghna estuarine area: An alternative approach, Acta Oceanologica Sinica, 37 (2018), 40-49.
doi: 10.1007/s13131-018-1157-9.
|
[16]
|
G. C. Paul, S Senthilkumar and R. Pria, An efficient approach to forecast water levels owing to the interaction of tide and surge associated with a storm along the coast of Bangladesh, Ocean Engineering, 148 (2018), 516-529.
doi: 10.1016/j.oceaneng.2017.10.031.
|
[17]
|
G. D. Roy, A. B. M. Humayun Kabir, M. M. Mandal and M. Z. Haque, Polar coordinate shallow water storm surge model for the coast of Bangladesh, Dynamics of Atmospheres and Oceans, 29 (1999), 397-413.
doi: 10.1016/S0377-0265(99)00012-3.
|
[18]
|
G. D. Roy and A. B. H. M. Kabir, Use of nested numerical scheme in a shallow water model for the coast of Bangladesh, BRAC University Journal, 1 (2004), 79-92.
|
[19]
|
H. X. Rui and M. Tabata, A mass-conservative characteristic finite element scheme for convection-diffusion problems, Journal of Scientific Computing, 43 (2010), 416-432.
doi: 10.1007/s10915-009-9283-3.
|