March  2021, 14(3): 1063-1078. doi: 10.3934/dcdss.2020230

Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition

1. 

Division of Mathematical and Physical Sciences, Kanazawa University, Kanazawa 920-1192, Japan

2. 

Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh

3. 

Japan Science and Technology Agency, PRESTO, Kawaguchi 332-0012, Japan

* Corresponding author: Md. Masum Murshed

Received  January 2019 Revised  June 2019 Published  December 2019

Energy estimates of the shallow water equations (SWEs) with a transmission boundary condition are studied theoretically and numerically. In the theoretical part, using a suitable energy, we begin with deriving an equality which implies an energy estimate of the SWEs with the Dirichlet and the slip boundary conditions. For the SWEs with a transmission boundary condition, an inequality for the energy estimate is proved under some assumptions to be satisfied in practical computation. In the numerical part, based on the theoretical results, the energy estimate of the SWEs with a transmission boundary condition is confirmed numerically by a finite difference method (FDM). The choice of a positive constant $ c_0 $ used in the transmission boundary condition is investigated additionally. Furthermore, we present numerical results by a Lagrange-Galerkin scheme, which are similar to those by the FDM. The theoretical results along with the numerical results strongly recommend that the transmission boundary condition is suitable for the boundaries in the open sea.

Citation: Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230
References:
[1]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, Journal de Mathématiques Pures et Appliquées, 86 (2006), 362-368.  doi: 10.1016/j.matpur.2006.06.005.  Google Scholar

[2]

P. K. Das, Prediction model for storm surges in the Bay of Bengal, Nature, 239 (1972), 211-213.  doi: 10.1038/239211a0.  Google Scholar

[3]

S. K. Debsarma, Simulations of storm surges in the Bay of Bengal, Marine Geodesy, 32 (2009), 178-198.  doi: 10.1080/01490410902869458.  Google Scholar

[4]

B. Jonhs and A. Ali, The numerical modeling of storm surges in the Bay of Bengal, Quarterly Journal of the Royal Meteorological Society, 106 (1980), 1-18.   Google Scholar

[5]

H. Kanayama and H. Dan, A finite element scheme for two-layer viscous shallow-water equations, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 163-191.  doi: 10.1007/BF03167549.  Google Scholar

[6]

H. Kanayama and H. Dan, Tsunami propagation from the open sea to the coast, Tsunami, Chapter 4, IntechOpen, (2016), 61-72. Google Scholar

[7]

H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅰ. Derivation and conservation laws, Memoirs of Numerical Mathematics, (1981/82), 39-64.  Google Scholar

[8]

H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅱ. A linearized system, Bulletin of University of Electro-Communications, 1 (1988), 347-355.   Google Scholar

[9]

H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅲ. A finite element scheme, Bulletin of University of Electro-Communications, 2 (1989), 47-62.   Google Scholar

[10]

C. Lucas, Cosine effect on shallow water equations and mathematical properties, Quarterly of Applied Mathematics, American Mathematical Society, 67 (2009), 283-310.  doi: 10.1090/S0033-569X-09-01113-0.  Google Scholar

[11]

G. C. Paul and A. I. M. Ismail, Tide surge interaction model including air bubble effects for the coast of Bangladesh, Journal of the Franklin Institute, 349 (2012), 2530-2546.  doi: 10.1016/j.jfranklin.2012.08.003.  Google Scholar

[12]

G. C. Paul and A. I. M. Ismail, Contribution of offshore islands in the prediction of water levels due to tide-surge interaction for the coastal region of Bangladesh, Natural Hazards, 65 (2013), 13-25.  doi: 10.1007/s11069-012-0341-z.  Google Scholar

[13]

G. C. PaulA. I. M. Ismail and M. F. Karim, Implementation of method of lines to predict water levels due to a storm along the coastal region of Bangladesh, Journal of Oceanography, 70 (2014), 199-210.  doi: 10.1007/s10872-014-0224-x.  Google Scholar

[14]

G. C. PaulM. M. MurshedM. R. HaqueM. M. Rahman and A. Hoque, Development of a cylindrical polar coordinates shallow water storm surge model for the coast of Bangladesh, Journal of Coastal Conservation, 21 (2017), 951-966.  doi: 10.1007/s11852-017-0565-x.  Google Scholar

[15]

G. C. PaulS. Senthilkumar and R. Pria, Storm surge simulation along the Meghna estuarine area: An alternative approach, Acta Oceanologica Sinica, 37 (2018), 40-49.  doi: 10.1007/s13131-018-1157-9.  Google Scholar

[16]

G. C. PaulS Senthilkumar and R. Pria, An efficient approach to forecast water levels owing to the interaction of tide and surge associated with a storm along the coast of Bangladesh, Ocean Engineering, 148 (2018), 516-529.  doi: 10.1016/j.oceaneng.2017.10.031.  Google Scholar

[17]

G. D. RoyA. B. M. Humayun KabirM. M. Mandal and M. Z. Haque, Polar coordinate shallow water storm surge model for the coast of Bangladesh, Dynamics of Atmospheres and Oceans, 29 (1999), 397-413.  doi: 10.1016/S0377-0265(99)00012-3.  Google Scholar

[18]

G. D. Roy and A. B. H. M. Kabir, Use of nested numerical scheme in a shallow water model for the coast of Bangladesh, BRAC University Journal, 1 (2004), 79-92.   Google Scholar

[19]

H. X. Rui and M. Tabata, A mass-conservative characteristic finite element scheme for convection-diffusion problems, Journal of Scientific Computing, 43 (2010), 416-432.  doi: 10.1007/s10915-009-9283-3.  Google Scholar

show all references

References:
[1]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, Journal de Mathématiques Pures et Appliquées, 86 (2006), 362-368.  doi: 10.1016/j.matpur.2006.06.005.  Google Scholar

[2]

P. K. Das, Prediction model for storm surges in the Bay of Bengal, Nature, 239 (1972), 211-213.  doi: 10.1038/239211a0.  Google Scholar

[3]

S. K. Debsarma, Simulations of storm surges in the Bay of Bengal, Marine Geodesy, 32 (2009), 178-198.  doi: 10.1080/01490410902869458.  Google Scholar

[4]

B. Jonhs and A. Ali, The numerical modeling of storm surges in the Bay of Bengal, Quarterly Journal of the Royal Meteorological Society, 106 (1980), 1-18.   Google Scholar

[5]

H. Kanayama and H. Dan, A finite element scheme for two-layer viscous shallow-water equations, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 163-191.  doi: 10.1007/BF03167549.  Google Scholar

[6]

H. Kanayama and H. Dan, Tsunami propagation from the open sea to the coast, Tsunami, Chapter 4, IntechOpen, (2016), 61-72. Google Scholar

[7]

H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅰ. Derivation and conservation laws, Memoirs of Numerical Mathematics, (1981/82), 39-64.  Google Scholar

[8]

H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅱ. A linearized system, Bulletin of University of Electro-Communications, 1 (1988), 347-355.   Google Scholar

[9]

H. Kanayama and T. Ushijima, On the viscous shallow-water equations. Ⅲ. A finite element scheme, Bulletin of University of Electro-Communications, 2 (1989), 47-62.   Google Scholar

[10]

C. Lucas, Cosine effect on shallow water equations and mathematical properties, Quarterly of Applied Mathematics, American Mathematical Society, 67 (2009), 283-310.  doi: 10.1090/S0033-569X-09-01113-0.  Google Scholar

[11]

G. C. Paul and A. I. M. Ismail, Tide surge interaction model including air bubble effects for the coast of Bangladesh, Journal of the Franklin Institute, 349 (2012), 2530-2546.  doi: 10.1016/j.jfranklin.2012.08.003.  Google Scholar

[12]

G. C. Paul and A. I. M. Ismail, Contribution of offshore islands in the prediction of water levels due to tide-surge interaction for the coastal region of Bangladesh, Natural Hazards, 65 (2013), 13-25.  doi: 10.1007/s11069-012-0341-z.  Google Scholar

[13]

G. C. PaulA. I. M. Ismail and M. F. Karim, Implementation of method of lines to predict water levels due to a storm along the coastal region of Bangladesh, Journal of Oceanography, 70 (2014), 199-210.  doi: 10.1007/s10872-014-0224-x.  Google Scholar

[14]

G. C. PaulM. M. MurshedM. R. HaqueM. M. Rahman and A. Hoque, Development of a cylindrical polar coordinates shallow water storm surge model for the coast of Bangladesh, Journal of Coastal Conservation, 21 (2017), 951-966.  doi: 10.1007/s11852-017-0565-x.  Google Scholar

[15]

G. C. PaulS. Senthilkumar and R. Pria, Storm surge simulation along the Meghna estuarine area: An alternative approach, Acta Oceanologica Sinica, 37 (2018), 40-49.  doi: 10.1007/s13131-018-1157-9.  Google Scholar

[16]

G. C. PaulS Senthilkumar and R. Pria, An efficient approach to forecast water levels owing to the interaction of tide and surge associated with a storm along the coast of Bangladesh, Ocean Engineering, 148 (2018), 516-529.  doi: 10.1016/j.oceaneng.2017.10.031.  Google Scholar

[17]

G. D. RoyA. B. M. Humayun KabirM. M. Mandal and M. Z. Haque, Polar coordinate shallow water storm surge model for the coast of Bangladesh, Dynamics of Atmospheres and Oceans, 29 (1999), 397-413.  doi: 10.1016/S0377-0265(99)00012-3.  Google Scholar

[18]

G. D. Roy and A. B. H. M. Kabir, Use of nested numerical scheme in a shallow water model for the coast of Bangladesh, BRAC University Journal, 1 (2004), 79-92.   Google Scholar

[19]

H. X. Rui and M. Tabata, A mass-conservative characteristic finite element scheme for convection-diffusion problems, Journal of Scientific Computing, 43 (2010), 416-432.  doi: 10.1007/s10915-009-9283-3.  Google Scholar

Figure 1.  The Bay of Bengal and the coastal region of Bangladesh
Figure 2.  Model domain
Figure 3.  Color contours of $ \eta_h^k $ by finite difference scheme (25) for the five cases $ (i) $-$ (v) $ discussed in Subsection 4.2
Figure 4.  Graphs of $ E_h^k $ (left), $ \sum_{i = 1}^4 I_{hi}^k \approx \frac{d}{dt} E(t) $ (center) and $ I_{hi}^k $, $ i = 1, \ldots, 4 $, (right) versus $ t = t^k\; (\ge 0, k\in \mathbb{Z}) $ for the five cases $ (i) $-$ (v) $
Figure 5.  Color contours of $ \eta_h^k $ by Lagrange-Galerkin scheme (26) for the five cases $ (i) $-$ (v) $ discussed in Section 5
Table 1.  Maximum and minimum values of $ I_{hi}^k $, $ i = 1,\ldots, 4 $, with respect to the number of transmission boundaries
$ \varGamma_T $ $ \varGamma_D $ $ I_{h1} $ $ I_{h2} $ $ I_{h3} $ $ I_{h4} $
0 4 Max 0.00 0.00 0.00 0.00
Min 0.00 0.00 0.00 $ -8.63 \times 10^{-7} $
1 3 Max $ 1.10 \times 10^{-4} $ 0.00 $ 1.44 \times 10^{-9} $ 0.00
Min $ -2.59 \times 10^{-3} $ $ -3.37 $ $ -1.25\times 10^{-9} $ $ -3.76\times 10^{-7} $
2 2 Max $ 1.86 \times 10^{-4} $ 0.00 $ 1.72 \times 10^{-9} $ 0.00
Min $ -3.38 \times 10^{-3} $ -6.27 $ -2.50 \times 10^{-9} $ $ -2.31 \times 10^{-7} $
3 1 Max $ 1.43 \times 10^{-4} $ 0.00 $ 2.58 \times 10^{-9} $ 0.00
Min $ -5.06 \times 10^{-3} $ $ -9.40 $ $ -3.75 \times 10^{-9} $ $ -1.74 \times 10^{-7} $
4 0 Max $ 2.87 \times 10^{-4} $ 0.00 $ 3.47 \times 10^{-9} $ 0.00
Min $ -6.75 \times 10^{-3} $ $ -12.54 $ $ -5.01 \times 10^{-9} $ $ -1.14 \times 10^{-7} $
$ \varGamma_T $ $ \varGamma_D $ $ I_{h1} $ $ I_{h2} $ $ I_{h3} $ $ I_{h4} $
0 4 Max 0.00 0.00 0.00 0.00
Min 0.00 0.00 0.00 $ -8.63 \times 10^{-7} $
1 3 Max $ 1.10 \times 10^{-4} $ 0.00 $ 1.44 \times 10^{-9} $ 0.00
Min $ -2.59 \times 10^{-3} $ $ -3.37 $ $ -1.25\times 10^{-9} $ $ -3.76\times 10^{-7} $
2 2 Max $ 1.86 \times 10^{-4} $ 0.00 $ 1.72 \times 10^{-9} $ 0.00
Min $ -3.38 \times 10^{-3} $ -6.27 $ -2.50 \times 10^{-9} $ $ -2.31 \times 10^{-7} $
3 1 Max $ 1.43 \times 10^{-4} $ 0.00 $ 2.58 \times 10^{-9} $ 0.00
Min $ -5.06 \times 10^{-3} $ $ -9.40 $ $ -3.75 \times 10^{-9} $ $ -1.74 \times 10^{-7} $
4 0 Max $ 2.87 \times 10^{-4} $ 0.00 $ 3.47 \times 10^{-9} $ 0.00
Min $ -6.75 \times 10^{-3} $ $ -12.54 $ $ -5.01 \times 10^{-9} $ $ -1.14 \times 10^{-7} $
Table 2.  $ c_0 $ and $ \mathcal{S}_h(c_0) $
$ c_0 $ $ \mathcal{S}_h(c_0) $
Case Ⅰ Case Ⅱ Case Ⅲ Case Ⅳ Case Ⅴ Case Ⅵ
0.1 12.17 8.53 8.14 5.47 44.48 44.49
0.2 9.89 6.97 6.35 4.04 34.36 34.37
0.3 8.84 6.24 5.52 3.35 28.74 28.75
0.4 8.27 5.85 5.08 2.98 25.23 25.24
0.5 7.93 5.61 4.84 2.79 22.82 22.83
0.6 7.71 5.46 4.71 2.69 21.05 21.06
0.7 7.58 5.37 4.65 2.66 19.69 19.69
0.8 7.51 5.32 4.63 2.67 18.60 18.61
0.9 7.4805 5.2969 4.64 2.70 17.71 17.72
1.0 7.4807 5.2977 4.68 2.76 16.98 16.98
1.1 7.50 5.32 4.73 2.82 16.36 16.36
1.2 7.55 5.35 4.79 2.89 15.83 15.84
1.5 7.75 5.49 5.02 3.12 14.66 14.66
$ c_0 $ $ \mathcal{S}_h(c_0) $
Case Ⅰ Case Ⅱ Case Ⅲ Case Ⅳ Case Ⅴ Case Ⅵ
0.1 12.17 8.53 8.14 5.47 44.48 44.49
0.2 9.89 6.97 6.35 4.04 34.36 34.37
0.3 8.84 6.24 5.52 3.35 28.74 28.75
0.4 8.27 5.85 5.08 2.98 25.23 25.24
0.5 7.93 5.61 4.84 2.79 22.82 22.83
0.6 7.71 5.46 4.71 2.69 21.05 21.06
0.7 7.58 5.37 4.65 2.66 19.69 19.69
0.8 7.51 5.32 4.63 2.67 18.60 18.61
0.9 7.4805 5.2969 4.64 2.70 17.71 17.72
1.0 7.4807 5.2977 4.68 2.76 16.98 16.98
1.1 7.50 5.32 4.73 2.82 16.36 16.36
1.2 7.55 5.35 4.79 2.89 15.83 15.84
1.5 7.75 5.49 5.02 3.12 14.66 14.66
[1]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[2]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[7]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[10]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[11]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[12]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[13]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[14]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[15]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[16]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[17]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[18]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[19]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[20]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (144)
  • HTML views (473)
  • Cited by (0)

[Back to Top]