doi: 10.3934/dcdss.2020232

Numerical simulation of fluidization for application in oxyfuel combustion

Department of Mathematics, FNSPE CTU in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic

* Corresponding author: Pavel Strachota

Received  January 2019 Revised  October 2019 Published  December 2019

This paper is concerned with the simulation of multiphase flow hydrodynamics in an experimental oxyfuel fluidized bed combustor designed for biomass fuels. The aim is to perform cross-validation between several models and solvers that differ in the description of some phenomena in question. We focus on the influence of turbulence modeling, inter-phase drag force models, the presence of biomass in the mixture. Also the possibility to simplify the full 3D description to a quasi-1D model is tested. However, the results indicate that such simplification is not suitable for chaotic phenomena in considered scenarios. The models were developed using ANSYS Fluent and OpenFOAM CFD software packages as well as our in-house CFD code CFBSim. The quantities relevant for comparison (the densities of the dispersed solid phases and the phase velocities) are presented in the form of cross-section averaged vertical profiles.

Citation: Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020232
References:
[1]

ANSYS, Inc., ANSYS Fluent Theory Guide, Release 15.0, Canonsburg, Pennsylvania, 2013. Google Scholar

[2] P. Basu, Combustion and Gasification in Fluidized Beds, CRC Press, 2006.  doi: 10.1201/9781420005158.  Google Scholar
[3]

P. Bauer, M. Beneš, R. Fučík, H. D. Hoang, V. Klement, R. Máca, J. Mach, T. Oberhuber, P. Strachota, V. Žabka and V. Havlena, Numerical simulation of flow in fluidized beds, Discrete. Cont. Dyn. S. S, 8 (2015), 833-846, URL http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11376. Google Scholar

[4]

M. Beneš, P. Strachota, R. Máca, V. Havlena and J. Mach, A quasi-1D model of biomass co-firing in a circulating fluidized bed boiler, in Finite Volumes for Complex Applications VII. Elliptic, Parabolic, and Hyperbolic Problems, Springer Proc. Math. Stat., Springer, Cham, 78 (2014), 791-799. doi: 10.1007/978-3-319-05591-6_79.  Google Scholar

[5] C. T. Bowman and D. J. Seery, Emissions from Continuous Combustion Systems, Plenum Press, 1972.   Google Scholar
[6]

J. Christiansen, Handbook Series Numerical Integration: Numerical solution of ordinary simultaneous differential equations of the 1st order using a method for automatic step change, Numer. Math., 14 (1970), 317-324.  doi: 10.1007/BF02165587.  Google Scholar

[7] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description, Academic Press, Inc., Boston, MA, 1994.   Google Scholar
[8]

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, (1983), 96-116. doi: 10.1016/B978-0-08-030937-8.50016-7.  Google Scholar

[9]

Y. F. Liu and O. Hinrichsen, CFD modeling of bubbling fluidized beds using OpenFOAM: Model validation and comparison of TVD differencing schemes, Computers and Chemical Engineering, 69 (2014), 75-88.  doi: 10.1016/j.compchemeng.2014.07.002.  Google Scholar

[10]

M. Mercedes Maroto-Valer (ed.), Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology, Woodhead Publishing, 2010. Google Scholar

[11]

1 F. SherM. A. PansC. SunC. Snape and H. Liu, Oxy-fuel combustion study of biomass fuels in a 20 kw fluidized bed combustor, Fuel, 215 (2018), 778-786.   Google Scholar

[12] L. D. Smoot and P. J. Smith, Coal Combustion and Gasification, Plenum Press, 1985.  doi: 10.1007/978-1-4757-9721-3.  Google Scholar
[13]

M. Syamlal and T. J. O'Brien, Computer simulation of bubbles in a fluidized bed, AIChE Symp. Ser., 85 (1989), 22-31.   Google Scholar

[14]

L. G. Zheng, Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, Woodhead Publishing, 2011. Google Scholar

show all references

References:
[1]

ANSYS, Inc., ANSYS Fluent Theory Guide, Release 15.0, Canonsburg, Pennsylvania, 2013. Google Scholar

[2] P. Basu, Combustion and Gasification in Fluidized Beds, CRC Press, 2006.  doi: 10.1201/9781420005158.  Google Scholar
[3]

P. Bauer, M. Beneš, R. Fučík, H. D. Hoang, V. Klement, R. Máca, J. Mach, T. Oberhuber, P. Strachota, V. Žabka and V. Havlena, Numerical simulation of flow in fluidized beds, Discrete. Cont. Dyn. S. S, 8 (2015), 833-846, URL http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11376. Google Scholar

[4]

M. Beneš, P. Strachota, R. Máca, V. Havlena and J. Mach, A quasi-1D model of biomass co-firing in a circulating fluidized bed boiler, in Finite Volumes for Complex Applications VII. Elliptic, Parabolic, and Hyperbolic Problems, Springer Proc. Math. Stat., Springer, Cham, 78 (2014), 791-799. doi: 10.1007/978-3-319-05591-6_79.  Google Scholar

[5] C. T. Bowman and D. J. Seery, Emissions from Continuous Combustion Systems, Plenum Press, 1972.   Google Scholar
[6]

J. Christiansen, Handbook Series Numerical Integration: Numerical solution of ordinary simultaneous differential equations of the 1st order using a method for automatic step change, Numer. Math., 14 (1970), 317-324.  doi: 10.1007/BF02165587.  Google Scholar

[7] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description, Academic Press, Inc., Boston, MA, 1994.   Google Scholar
[8]

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, (1983), 96-116. doi: 10.1016/B978-0-08-030937-8.50016-7.  Google Scholar

[9]

Y. F. Liu and O. Hinrichsen, CFD modeling of bubbling fluidized beds using OpenFOAM: Model validation and comparison of TVD differencing schemes, Computers and Chemical Engineering, 69 (2014), 75-88.  doi: 10.1016/j.compchemeng.2014.07.002.  Google Scholar

[10]

M. Mercedes Maroto-Valer (ed.), Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology, Woodhead Publishing, 2010. Google Scholar

[11]

1 F. SherM. A. PansC. SunC. Snape and H. Liu, Oxy-fuel combustion study of biomass fuels in a 20 kw fluidized bed combustor, Fuel, 215 (2018), 778-786.   Google Scholar

[12] L. D. Smoot and P. J. Smith, Coal Combustion and Gasification, Plenum Press, 1985.  doi: 10.1007/978-1-4757-9721-3.  Google Scholar
[13]

M. Syamlal and T. J. O'Brien, Computer simulation of bubbles in a fluidized bed, AIChE Symp. Ser., 85 (1989), 22-31.   Google Scholar

[14]

L. G. Zheng, Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, Woodhead Publishing, 2011. Google Scholar

Figure 1.  Dimensions of the combustion chamber and meshes considered. (A) Dimensions of the cross-section of combustion chamber. (B) Coarse mesh generated by ANSYS Meshing. (C) Cross-section of the mesh in ANSYS. (D) Cross-section of the mesh in OpenFOAM generated by BlockMesh
Figure 3.  Profiles of the gas velocity averaged across the cross-section of the chamber obtained from the simulations for the circulating (upper curves) and bubbling (lower curves) fluidization regimes
Figure 2.  ANSYS Fluent simulation of the sand particles dynamics in the lower part of the combustion chamber in the bubbling regime shown by means of the sand volume fraction. Time sequence of snapshots of the longitudinal slice through the center of the 3D domain is displayed. The sequence shows a two-dimensional image of penetration dynamics of the gas phase (the lighter regions) through sand particles (their distribution is indicated by darker regions)
Figure 4.  Linear density of sand particles along the vertical axis of the combustion chamber. Circulating regime
Figure 5.  Velocity of sand particles averaged across the cross-section of the chamber. Circulating regime
Figure 6.  Comparison of biomass linear densities between 1D CFBSim code and ANSYS Fluent
Figure 7.  Comparison between the profiles of the biomass velocity averaged over the cross-section of the chamber obtained by 1D CFBSim code and ANSYS Fluent
Figure 8.  Velocity of sand particles averaged across the cross-section of the chamber in circulating regime for Gidaspow [7] and Syamlal [13] drag models
Figure 9.  Linear density of sand particles in circulating regime in dependence on drag models according to Gidaspow [7] and Syamlal [13]
Figure 10.  Comparison of linear densities of sand particles with RAS turbulence model and laminar flow available in the OpenFOAM package (solver twoPhaseEulerFoam)
Figure 11.  Comparison of the profiles of the velocity of sand particles averaged over the cross-section of the chamber obtained using the RAS turbulence model and laminar flow model available in the OpenFOAM package (solver twoPhaseEulerFoam). The profiles are also compared with the velocity profile obtained by the 1D CFBSim model
Figure 12.  Comparison of linear densities in the two-phase laminar model (OpenFOAM solver twoPhaseEulerFoam) and three-phase laminar model (OpenFOAM solver reactingMultiphaseEulerFoam)
Figure 13.  Comparison of particle velocities averaged over the cross-section of the chamber in the two-phase laminar model (OpenFOAM solver twoPhaseEulerFoam) and three-phase laminar model (OpenFOAM solver reactingMultiphaseEulerFoam)
Figure 14.  Comparison of the gas velocity averaged over the cross-section of the chamber under the oxyfuel setting and the air setting. Computed in ANSYS Fluent
Figure 15.  Comparison of the velocity of sand particles averaged over the cross-section of the chamber under the oxyfuel setting and the air setting. Computed in ANSYS Fluent
Figure 16.  Comparison of the linear density of sand particles under the oxyfuel setting and the air setting. Computed in ANSYS Fluent
Table 1.  Phase properties corresponding to given temperature and gas composition (air, oxyfuel). Diameter $ d_b $ is calculated so that the volume of a particle corresponds to the average volume of biomass pellets used in [11]. Note that the kinematic viscosity values of all the phases have the same order of magnitude ($ \propto 10^{-4}\:\mathrm{m}^2\;\mathrm{s}^{-1} $)
Temperature $ T = 1000 \: \mathrm{K} $
Air - density $ \rho_g = 0.3564 \: \mathrm{kg}\;\mathrm{m}^{-3} $
Air - dynamic viscosity $ \mu_g = 4.1923 \cdot 10^{-5} \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Oxyfuel gas - density $ \rho_g = 0.495 \: \mathrm{kg} \; \mathrm{m}^{-3} $
Oxyfuel gas - dynamic viscosity $ \mu_g = 5.8227 \cdot 10^{-5} \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Sand - particle diameter $ d_s = 0.78 \: \mathrm{mm} $
Sand - density $ \rho_s = 2655 \: \mathrm{kg} \; \mathrm{m}^{-3} $
Sand - dynamic viscosity [7] $ \mu_s = 0.5 \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Sand - packing limit $ 0.59 $
Biomass (Miscanthus) - particle diameter $ d_b = 10.36 \: \mathrm{mm} $
Biomass (Miscanthus) - density $ \rho_b = 603 \: \mathrm{kg} \; \mathrm{m}^{-3} $
Biomass (Miscanthus) - dynamic viscosity [7] $ \mu_b = 0.5 \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Biomass (Miscanthus) - packing limit $ 0.5 $
Temperature $ T = 1000 \: \mathrm{K} $
Air - density $ \rho_g = 0.3564 \: \mathrm{kg}\;\mathrm{m}^{-3} $
Air - dynamic viscosity $ \mu_g = 4.1923 \cdot 10^{-5} \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Oxyfuel gas - density $ \rho_g = 0.495 \: \mathrm{kg} \; \mathrm{m}^{-3} $
Oxyfuel gas - dynamic viscosity $ \mu_g = 5.8227 \cdot 10^{-5} \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Sand - particle diameter $ d_s = 0.78 \: \mathrm{mm} $
Sand - density $ \rho_s = 2655 \: \mathrm{kg} \; \mathrm{m}^{-3} $
Sand - dynamic viscosity [7] $ \mu_s = 0.5 \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Sand - packing limit $ 0.59 $
Biomass (Miscanthus) - particle diameter $ d_b = 10.36 \: \mathrm{mm} $
Biomass (Miscanthus) - density $ \rho_b = 603 \: \mathrm{kg} \; \mathrm{m}^{-3} $
Biomass (Miscanthus) - dynamic viscosity [7] $ \mu_b = 0.5 \: \mathrm{kg} \; \mathrm{m}^{-1} \; \mathrm{s}^{-1} $
Biomass (Miscanthus) - packing limit $ 0.5 $
[1]

Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833

[2]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[3]

Anna Kaźmierczak, Jan Sokolowski, Antoni Zochowski. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Mathematical Control & Related Fields, 2018, 8 (1) : 89-115. doi: 10.3934/mcrf.2018004

[4]

Yong Hong Wu, B. Wiwatanapataphee. Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 695-706. doi: 10.3934/dcdsb.2007.8.695

[5]

Šárka Nečasová. Stokes and Oseen flow with Coriolis force in the exterior domain. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 339-351. doi: 10.3934/dcdss.2008.1.339

[6]

Huaiyu Jian, Hongjie Ju, Wei Sun. Traveling fronts of curve flow with external force field. Communications on Pure & Applied Analysis, 2010, 9 (4) : 975-986. doi: 10.3934/cpaa.2010.9.975

[7]

Michael L. Frankel, Victor Roytburd. Dynamical structure of one-phase model of solid combustion. Conference Publications, 2005, 2005 (Special) : 287-296. doi: 10.3934/proc.2005.2005.287

[8]

Scott Gordon. Nonuniformity of deformation preceding shear band formation in a two-dimensional model for Granular flow. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1361-1374. doi: 10.3934/cpaa.2008.7.1361

[9]

Qun Lin, Antoinette Tordesillas. Towards an optimization theory for deforming dense granular materials: Minimum cost maximum flow solutions. Journal of Industrial & Management Optimization, 2014, 10 (1) : 337-362. doi: 10.3934/jimo.2014.10.337

[10]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[11]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[12]

Joachim Escher, Piotr B. Mucha. The surface diffusion flow on rough phase spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 431-453. doi: 10.3934/dcds.2010.26.431

[13]

Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183

[14]

Matthieu Hillairet, Ayman Moussa, Franck Sueur. On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow. Kinetic & Related Models, 2019, 12 (4) : 681-701. doi: 10.3934/krm.2019026

[15]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[16]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[17]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[18]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[19]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[20]

Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]