• Previous Article
    Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
  • DCDS-S Home
  • This Issue
  • Next Article
    Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh
March  2021, 14(3): 881-891. doi: 10.3934/dcdss.2020233

A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies

1. 

Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510, Japan

2. 

Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

3. 

School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

* Corresponding author. E-mail address : uegata@meiji.ac.jp (Yasuhide Uegata)

Received  January 2019 Revised  October 2019 Published  December 2019

We propose a simple and accurate procedure how to extract the values of model parameters in a flame/smoldering evolution equation from 2D movie images of real experiments. The procedure includes a novel method of image segmentation, which can detect an expanding smoldering front as a plane polygonal curve. The evolution equation is equivalent to the so-called Kuramoto-Sivashinsky (KS) equation in a certain scale. Our results suggest a valid range of parameters in the KS equation as well as the validity of the KS equation itself.

Citation: Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233
References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.   Google Scholar

[2]

C. L. Epstein and M. Gage, The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.  doi: 10.1007/978-1-4613-9583-6_2.  Google Scholar

[3]

M. L. Frankel and G. I. Sivashinsky, On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.  doi: 10.1051/jphys:0198700480102500.  Google Scholar

[4]

M. GotoK. Kuwana and S. Yazaki, A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.  doi: 10.14495/jsiaml.10.49.  Google Scholar

[5]

M. GotoK. KuwanaG. Kushida and S. Yazaki, Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.  doi: 10.1016/j.proci.2018.06.001.  Google Scholar

[6]

M. KassA. Witkin and D. Terzopulos, Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.  doi: 10.1007/BF00133570.  Google Scholar

[7]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.  doi: 10.1002/mma.514.  Google Scholar

[9]

K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.  doi: 10.1007/s00791-004-0131-6.  Google Scholar

[10]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.   Google Scholar

[12]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[13]

N. M. Zaitoun and M. J. Aqel, Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.  doi: 10.1016/j.procs.2015.09.027.  Google Scholar

show all references

References:
[1]

M. BenešM. KimuraP. PaušD. ŠevčovičT. Tsujikawa and S. Yazaki, Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.   Google Scholar

[2]

C. L. Epstein and M. Gage, The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.  doi: 10.1007/978-1-4613-9583-6_2.  Google Scholar

[3]

M. L. Frankel and G. I. Sivashinsky, On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.  doi: 10.1051/jphys:0198700480102500.  Google Scholar

[4]

M. GotoK. Kuwana and S. Yazaki, A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.  doi: 10.14495/jsiaml.10.49.  Google Scholar

[5]

M. GotoK. KuwanaG. Kushida and S. Yazaki, Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.  doi: 10.1016/j.proci.2018.06.001.  Google Scholar

[6]

M. KassA. Witkin and D. Terzopulos, Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.  doi: 10.1007/BF00133570.  Google Scholar

[7]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.  doi: 10.1143/PTP.55.356.  Google Scholar

[8]

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.  doi: 10.1002/mma.514.  Google Scholar

[9]

K. Mikula and D. Ševčovič, Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.  doi: 10.1007/s00791-004-0131-6.  Google Scholar

[10]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

[11]

D. Ševčovič and S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.   Google Scholar

[12]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[13]

N. M. Zaitoun and M. J. Aqel, Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.  doi: 10.1016/j.procs.2015.09.027.  Google Scholar

Figure 1.  The photographs depict snapshots from an experimental movie of spreading flame/smoldering front along a sheet of paper placed near the floor at 200th, 400th, 1000th, 1600th, $ \cdots $, 4000th frames at the rate of 30 fps. Experiments were performed by the same method as [5]
Figure 2.  The left figure depicts numerical solutions to (1), with the normal velocity (2) in which the parameters are given by the right table and $ W $ is chosen for controlling the grid-point spacing to be uniform (see section 3). The solution curves evolve from inside to outside. The initial curve is a circle with the diameter $ R = R_\mathrm{ini} $ with 10% noise (see [4] in detail)
Figure 3.  (a) Jordan curve $ \Gamma $      (b) Jordan polygonal curve $ \mathcal{P} $
Figure 4.  The upper-left figure depicts selected segmentation curves at frames: 400, 1000, 1600, 2200, 2800, 3400, 4000, summarizing the front evolution in the other photographs from left to right, upper to lower. The blue curve in each photograph is a segmentation curve, and the background vague region is the same as that in FIGURE 1
Figure 5.  (Left) The total length of front $ \tilde{L} [\mathrm{mm}] $ vs. the actual time $ [\mathrm{second}] $. (Right) The enclosed area $ \tilde{A} [\mathrm{mm}^2] $ vs. the actual time $ [\mathrm{second}] $. Blue points indicate the actual values and red curves are the graphs of (23) and (24), respectively
Figure 6.  (Left) $ V^{(0)} $ vs. time, (Right) $ \alpha_\mathrm{eff} $ vs. time
Table 1.  Discretizations of length, normal/tangent vector, and normal velocity
$ r_i=\|\boldsymbol{x}_i-\boldsymbol{x}_{i-1}\| $ : The length of $ \mathcal{P}_i $
$ L= \sum\limits_{i=1}^Nr_i $ : The total length of $ \mathcal{P} $
$ \boldsymbol{t}_i=(\boldsymbol{x}_i-\boldsymbol{x}_{i-1})/r_i $ : The unit tangent vector on $ \mathcal{P}_i $
$ \boldsymbol{n}_i=-\boldsymbol{t}_i^\bot $ : The outward unit normal vector on $ \mathcal{P}_i $
$ v_i $ : A given representative normal velocity on $ \mathcal{P}_i $
$ \phi_i=\mathrm{sgn}(D_i)\arccos(\boldsymbol{t}_i\cdot\boldsymbol{t}_{i+1}) $ : The angle between the adjacent edges $ \mathcal{P}_{i} $ and $ \mathcal{P}_{i+1} $ where $ D_i=\det(\boldsymbol{t}_i, \boldsymbol{t}_{i+1}) $
$ \boldsymbol{T}_i=(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/(2\mathsf{cos}_i) $ : The unit tangent vector at $ \boldsymbol{x}_i $ where $ \mathsf{cos}_i=\cos(\phi_i/2)=\|(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/2\| $
$ \boldsymbol{N}_i=(\boldsymbol{n}_i+\boldsymbol{n}_{i+1})/(2\mathsf{cos}_i) $ : The outward unit normal vector at $ \boldsymbol{x}_i $
$ V_i=(v_i+v_{i+1})/(2\mathsf{cos}_i) $ : The normal velocity at $ \boldsymbol{x}_i $
$ r_i=\|\boldsymbol{x}_i-\boldsymbol{x}_{i-1}\| $ : The length of $ \mathcal{P}_i $
$ L= \sum\limits_{i=1}^Nr_i $ : The total length of $ \mathcal{P} $
$ \boldsymbol{t}_i=(\boldsymbol{x}_i-\boldsymbol{x}_{i-1})/r_i $ : The unit tangent vector on $ \mathcal{P}_i $
$ \boldsymbol{n}_i=-\boldsymbol{t}_i^\bot $ : The outward unit normal vector on $ \mathcal{P}_i $
$ v_i $ : A given representative normal velocity on $ \mathcal{P}_i $
$ \phi_i=\mathrm{sgn}(D_i)\arccos(\boldsymbol{t}_i\cdot\boldsymbol{t}_{i+1}) $ : The angle between the adjacent edges $ \mathcal{P}_{i} $ and $ \mathcal{P}_{i+1} $ where $ D_i=\det(\boldsymbol{t}_i, \boldsymbol{t}_{i+1}) $
$ \boldsymbol{T}_i=(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/(2\mathsf{cos}_i) $ : The unit tangent vector at $ \boldsymbol{x}_i $ where $ \mathsf{cos}_i=\cos(\phi_i/2)=\|(\boldsymbol{t}_i+\boldsymbol{t}_{i+1})/2\| $
$ \boldsymbol{N}_i=(\boldsymbol{n}_i+\boldsymbol{n}_{i+1})/(2\mathsf{cos}_i) $ : The outward unit normal vector at $ \boldsymbol{x}_i $
$ V_i=(v_i+v_{i+1})/(2\mathsf{cos}_i) $ : The normal velocity at $ \boldsymbol{x}_i $
[1]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[4]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[5]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[8]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[14]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[15]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[16]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[17]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[18]

Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087

[19]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[20]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (96)
  • HTML views (475)
  • Cited by (0)

[Back to Top]