
-
Previous Article
Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
- DCDS-S Home
- This Issue
-
Next Article
Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh
A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies
1. | Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510, Japan |
2. | Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan |
3. | School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan |
We propose a simple and accurate procedure how to extract the values of model parameters in a flame/smoldering evolution equation from 2D movie images of real experiments. The procedure includes a novel method of image segmentation, which can detect an expanding smoldering front as a plane polygonal curve. The evolution equation is equivalent to the so-called Kuramoto-Sivashinsky (KS) equation in a certain scale. Our results suggest a valid range of parameters in the KS equation as well as the validity of the KS equation itself.
References:
[1] |
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki,
Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.
|
[2] |
C. L. Epstein and M. Gage,
The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.
doi: 10.1007/978-1-4613-9583-6_2. |
[3] |
M. L. Frankel and G. I. Sivashinsky,
On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.
doi: 10.1051/jphys:0198700480102500. |
[4] |
M. Goto, K. Kuwana and S. Yazaki,
A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.
doi: 10.14495/jsiaml.10.49. |
[5] |
M. Goto, K. Kuwana, G. Kushida and S. Yazaki,
Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.
doi: 10.1016/j.proci.2018.06.001. |
[6] |
M. Kass, A. Witkin and D. Terzopulos,
Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.
doi: 10.1007/BF00133570. |
[7] |
Y. Kuramoto and T. Tsuzuki,
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[8] |
K. Mikula and D. Ševčovič,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[9] |
K. Mikula and D. Ševčovič,
Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.
doi: 10.1007/s00791-004-0131-6. |
[10] |
D. Ševčovič and S. Yazaki,
Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.
doi: 10.1007/s13160-011-0046-9. |
[11] |
D. Ševčovič and S. Yazaki,
On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.
|
[12] |
G. I. Sivashinsky,
Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0. |
[13] |
N. M. Zaitoun and M. J. Aqel,
Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.
doi: 10.1016/j.procs.2015.09.027. |
show all references
References:
[1] |
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki,
Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.
|
[2] |
C. L. Epstein and M. Gage,
The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.
doi: 10.1007/978-1-4613-9583-6_2. |
[3] |
M. L. Frankel and G. I. Sivashinsky,
On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.
doi: 10.1051/jphys:0198700480102500. |
[4] |
M. Goto, K. Kuwana and S. Yazaki,
A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.
doi: 10.14495/jsiaml.10.49. |
[5] |
M. Goto, K. Kuwana, G. Kushida and S. Yazaki,
Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.
doi: 10.1016/j.proci.2018.06.001. |
[6] |
M. Kass, A. Witkin and D. Terzopulos,
Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.
doi: 10.1007/BF00133570. |
[7] |
Y. Kuramoto and T. Tsuzuki,
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[8] |
K. Mikula and D. Ševčovič,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[9] |
K. Mikula and D. Ševčovič,
Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.
doi: 10.1007/s00791-004-0131-6. |
[10] |
D. Ševčovič and S. Yazaki,
Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.
doi: 10.1007/s13160-011-0046-9. |
[11] |
D. Ševčovič and S. Yazaki,
On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.
|
[12] |
G. I. Sivashinsky,
Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0. |
[13] |
N. M. Zaitoun and M. J. Aqel,
Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.
doi: 10.1016/j.procs.2015.09.027. |



: The length of |
|
: The total length of |
|
: The unit tangent vector on |
|
: The outward unit normal vector on |
|
: A given representative normal velocity on |
|
: The angle between the adjacent edges |
|
: The unit tangent vector at |
|
: The outward unit normal vector at |
|
: The normal velocity at |
: The length of |
|
: The total length of |
|
: The unit tangent vector on |
|
: The outward unit normal vector on |
|
: A given representative normal velocity on |
|
: The angle between the adjacent edges |
|
: The unit tangent vector at |
|
: The outward unit normal vector at |
|
: The normal velocity at |
[1] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[2] |
Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225 |
[3] |
Yu-Lin Chang, Chin-Yu Yang. Some useful inequalities via trace function method in Euclidean Jordan algebras. Numerical Algebra, Control and Optimization, 2014, 4 (1) : 39-48. doi: 10.3934/naco.2014.4.39 |
[4] |
Ibrar Hussain, Haider Ali, Muhammad Shahkar Khan, Sijie Niu, Lavdie Rada. Robust region-based active contour models via local statistical similarity and local similarity factor for intensity inhomogeneity and high noise image segmentation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022014 |
[5] |
Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729 |
[6] |
Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701 |
[7] |
Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247 |
[8] |
Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91 |
[9] |
D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557 |
[10] |
Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95 |
[11] |
Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933 |
[12] |
L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555 |
[13] |
Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2020, 9 (1) : 181-191. doi: 10.3934/eect.2020002 |
[14] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1471-1496. doi: 10.3934/dcdsb.2021098 |
[15] |
Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041 |
[16] |
Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028 |
[17] |
Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027 |
[18] |
Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems and Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95 |
[19] |
Yuantian Xia, Juxiang Zhou, Tianwei Xu, Wei Gao. An improved deep convolutional neural network model with kernel loss function in image classification. Mathematical Foundations of Computing, 2020, 3 (1) : 51-64. doi: 10.3934/mfc.2020005 |
[20] |
Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]