
-
Previous Article
Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
- DCDS-S Home
- This Issue
-
Next Article
Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh
A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies
1. | Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510, Japan |
2. | Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan |
3. | School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan |
We propose a simple and accurate procedure how to extract the values of model parameters in a flame/smoldering evolution equation from 2D movie images of real experiments. The procedure includes a novel method of image segmentation, which can detect an expanding smoldering front as a plane polygonal curve. The evolution equation is equivalent to the so-called Kuramoto-Sivashinsky (KS) equation in a certain scale. Our results suggest a valid range of parameters in the KS equation as well as the validity of the KS equation itself.
References:
[1] |
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki,
Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.
|
[2] |
C. L. Epstein and M. Gage,
The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.
doi: 10.1007/978-1-4613-9583-6_2. |
[3] |
M. L. Frankel and G. I. Sivashinsky,
On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.
doi: 10.1051/jphys:0198700480102500. |
[4] |
M. Goto, K. Kuwana and S. Yazaki,
A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.
doi: 10.14495/jsiaml.10.49. |
[5] |
M. Goto, K. Kuwana, G. Kushida and S. Yazaki,
Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.
doi: 10.1016/j.proci.2018.06.001. |
[6] |
M. Kass, A. Witkin and D. Terzopulos,
Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.
doi: 10.1007/BF00133570. |
[7] |
Y. Kuramoto and T. Tsuzuki,
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[8] |
K. Mikula and D. Ševčovič,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[9] |
K. Mikula and D. Ševčovič,
Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.
doi: 10.1007/s00791-004-0131-6. |
[10] |
D. Ševčovič and S. Yazaki,
Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.
doi: 10.1007/s13160-011-0046-9. |
[11] |
D. Ševčovič and S. Yazaki,
On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.
|
[12] |
G. I. Sivashinsky,
Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0. |
[13] |
N. M. Zaitoun and M. J. Aqel,
Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.
doi: 10.1016/j.procs.2015.09.027. |
show all references
References:
[1] |
M. Beneš, M. Kimura, P. Pauš, D. Ševčovič, T. Tsujikawa and S. Yazaki,
Application of a curvature adjusted method in image segmentation, Bulletin of the Institute of Mathematics, Academia Sinica New Series, 3 (2008), 509-523.
|
[2] |
C. L. Epstein and M. Gage,
The curve shortening flow, Wave Motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986) Mathematical Sciences Research Institute Publications, Springer, New York, 7 (1987), 15-59.
doi: 10.1007/978-1-4613-9583-6_2. |
[3] |
M. L. Frankel and G. I. Sivashinsky,
On the nonlinear thermal diffusive theory of curved flames, Journal de Physique, 48 (1987), 25-28.
doi: 10.1051/jphys:0198700480102500. |
[4] |
M. Goto, K. Kuwana and S. Yazaki,
A simple and fast numerical method for solving flame/smoldering evolution equations, JSIAM Letter, 10 (2018), 49-52.
doi: 10.14495/jsiaml.10.49. |
[5] |
M. Goto, K. Kuwana, G. Kushida and S. Yazaki,
Experimental and theoretical study on near-floor flame spread along a thin solid, Proceedings of the Combustion Institute, 37 (2019), 3783-3791.
doi: 10.1016/j.proci.2018.06.001. |
[6] |
M. Kass, A. Witkin and D. Terzopulos,
Snakes: Active contour models, Int. J. Computer Vision, 1 (1988), 321-331.
doi: 10.1007/BF00133570. |
[7] |
Y. Kuramoto and T. Tsuzuki,
Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progress of Theoretical Physics, 55 (1976), 356-369.
doi: 10.1143/PTP.55.356. |
[8] |
K. Mikula and D. Ševčovič,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Math. Methods Appl. Sci., 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[9] |
K. Mikula and D. Ševčovič,
Computational and qualitative aspects of evolution of curves driven by curvature and external force, Comput. Vis. Sci., 6 (2004), 211-225.
doi: 10.1007/s00791-004-0131-6. |
[10] |
D. Ševčovič and S. Yazaki,
Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math., 28 (2011), 413-442.
doi: 10.1007/s13160-011-0046-9. |
[11] |
D. Ševčovič and S. Yazaki,
On a gradient flow of plane curves minimizing the anisoperimetric ratio, IAENG International J. Appl. Math., 43 (2013), 160-171.
|
[12] |
G. I. Sivashinsky,
Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astronautica, 4 (1977), 1177-1206.
doi: 10.1016/0094-5765(77)90096-0. |
[13] |
N. M. Zaitoun and M. J. Aqel,
Survey on image segmentation techniques, Procedia Computer Science, 65 (2015), 797-806.
doi: 10.1016/j.procs.2015.09.027. |



: The length of |
|
: The total length of |
|
: The unit tangent vector on |
|
: The outward unit normal vector on |
|
: A given representative normal velocity on |
|
: The angle between the adjacent edges |
|
: The unit tangent vector at |
|
: The outward unit normal vector at |
|
: The normal velocity at |
: The length of |
|
: The total length of |
|
: The unit tangent vector on |
|
: The outward unit normal vector on |
|
: A given representative normal velocity on |
|
: The angle between the adjacent edges |
|
: The unit tangent vector at |
|
: The outward unit normal vector at |
|
: The normal velocity at |
[1] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[2] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[3] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[4] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[5] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[6] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[7] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[8] |
Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231 |
[9] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[10] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[11] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[12] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[13] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[14] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[15] |
Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020119 |
[16] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[17] |
Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088 |
[18] |
Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087 |
[19] |
Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232 |
[20] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]