[1]
|
M. J. Ahammad and J. M. Alam, A numerical study of two-phase miscible flow through porous media with a Lagrangian model, The Journal of Computational Multiphase Flows, 9 (2017), 127-143.
doi: 10.1177/1757482X17701791.
|
[2]
|
K. Boukir, Y. Maday, B. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 25 (1997), 1421-1454.
doi: 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A.
|
[3]
|
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0.
|
[4]
|
H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle, Flow, Turbulence and Combustion, 1 (1949), 27-34.
doi: 10.1007/BF02120313.
|
[5]
|
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.
|
[6]
|
F. Cimolin and M. Discacciati, Navier-Stokes/Forchheimer models for filtration through porous media, Applied Numerical Mathematics, 72 (2013), 205-224.
doi: 10.1016/j.apnum.2013.07.001.
|
[7]
|
M. Choi, G. Son and W. Shim, A level-set method for droplet impact and penetration into a porous medium, Computers & Fluids, 145 (2017), 153-166.
doi: 10.1016/j.compfluid.2016.12.014.
|
[8]
|
D. M. Dolberg, J. Helgesen, T. H. Hanssen, I. Magnus, G. Saigal and B. K. Pedersen, Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace, Norway, The Leading Edge, 19 (2000), 392-399.
doi: 10.1190/1.1438618.
|
[9]
|
S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress, 48 (1952), 89-94.
|
[10]
|
R. E. Ewing and T. F. Russell, Multistep Galerkin methods along characteristics for convection-diffusion problems, Advances in Computer Methods for Partial Differential Equations, IMACS, 4 (1981), 28-36.
|
[11]
|
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5.
|
[12]
|
A. Hazen, Some physical properties of sand and gravels with special reference to their use in filtration, 24th Annual Report, Massachusetts State Board of Health, 2 (1893), 539-556.
doi: 10.4159/harvard.9780674600485.c25.
|
[13]
|
F. Hecht, New development in freefem++, Journal of Numerical Mathematics, 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013.
|
[14]
|
C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.
doi: 10.1016/0017-9310(90)90015-M.
|
[15]
|
M. K. Hubbert, Darcy's law and the field equations of the flow of underground fluids, Hydrological Sciences Journal, 2 (1957), 23-59.
|
[16]
|
M. R. Islam, M. E. Hossain, S. H. Mousavizadegan, S. Mustafiz and J. H. Abour-Kassem, Advance Petroleum Reservoir Simulation, 2nd edition, Scrivener, Canada, 2016.
|
[17]
|
G. A. Nasilio, O. Buzzi, S. Fityus, T. S. Yun and D. W. Smith, Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical, and experimental approach, Computers and Geotechnics, 36 (2009), 1200-1206.
|
[18]
|
J. Nečas, Les Méthods Directes en Théories des Équations Elliptiques, Masson, Paris, 1967.
|
[19]
|
D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.
doi: 10.1016/0142-727X(91)90062-Z.
|
[20]
|
D. A. Nield, Modeling fluid flow and heat transfer in a saturated porous medium, J. Appl. Math. Decis. Sci., 4 (2000), 165-173.
doi: 10.1155/S1173912600000122.
|
[21]
|
D. A. Nield and A. Bejan, Convection in Porous Medium, 5th edition, Springer, Switzerland, 2016.
|
[22]
|
P. Nithiarasu, K. N. Seetharamu and T. Sundararajan, Natural convection heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, 40 (1997), 3955-3967.
|
[23]
|
H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equation, Mathematical modeling and numerical analysis., 50 (2016), 361-380.
doi: 10.1051/m2an/2015047.
|
[24]
|
H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme of second-order in time for the Navier-Stokes equations, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, 183 (2016), 497-530.
|
[25]
|
H. Notsu and M. Tabata, Stabilized Lagrange-Galerkin schemes of first- and second-order in time for the Navier-Stokes equations, Advances in Computational Fluid-Structure Interaction and Flow Simulation, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, (2016), 331-343.
|
[26]
|
W. Sobieski and A. Trykozko, Darcy's and Forchheimer's laws in practice. Part Ⅰ. The experiment, Technical Sciences, 17 (2014), 321-335.
|
[27]
|
Y. Su and J. H. Davidson, Modeling Approaches to Natural Convection in Porous Medium, SpringerBriefs in Applied Sciences and Technology, Springer, New York, 2015.
|
[28]
|
H. Teng and T. S. Zhao, An extension of Darcy's law to non-Stokes flow in porous media, Chemical Engineering Science, 55 (2000), 2727-2735.
doi: 10.1016/S0009-2509(99)00546-1.
|
[29]
|
L. Wang, L.-P. Wang, Z. Guo and J. Mi, Volume-average macroscopic equation for fluid flow in moving porous media, International Journal of Heat and Mass Transfer, 82 (2015), 357-368.
|
[30]
|
S. Whitaker, The transport equations for multi-phase systems, Chemical Engineering Science, 28 (1973), 139-147.
doi: 10.1016/0009-2509(73)85094-8.
|