• Previous Article
    Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects
  • DCDS-S Home
  • This Issue
  • Next Article
    Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution
doi: 10.3934/dcdss.2020234

Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media

1. 

Division of Mathematical and Physics Science, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

2. 

Faculty of Mathematical and Physics, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

3. 

Japan Science and Technology Agency, PRESTO, Kawaguchi 332-0012, Japan

* Corresponding author: Imam Wijaya

Received  January 2019 Revised  May 2019 Published  December 2019

The purposes of this work are to study the $ L^{2} $-stability of a Navier-Stokes type model for non-stationary flow in porous media proposed by Hsu and Cheng in 1989 and to develop a Lagrange-Galerkin scheme with the Adams-Bashforth method to solve that model numerically. The stability estimate is obtained thanks to the presence of a nonlinear drag force term in the model which corresponds to the Forchheimer term. We derive the Lagrange-Galerkin scheme by extending the idea of the method of characteristics to overcome the difficulty which comes from the non-homogeneous porosity. Numerical experiments are conducted to investigate the experimental order of convergence of the scheme. For both simple and complex designs of porosities, our numerical simulations exhibit natural flow profiles which well describe the flow in non-homogeneous porous media.

Citation: Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020234
References:
[1]

M. J. Ahammad and J. M. Alam, A numerical study of two-phase miscible flow through porous media with a Lagrangian model, The Journal of Computational Multiphase Flows, 9 (2017), 127-143.  doi: 10.1177/1757482X17701791.  Google Scholar

[2]

K. BoukirY. MadayB. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 25 (1997), 1421-1454.  doi: 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle, Flow, Turbulence and Combustion, 1 (1949), 27-34.  doi: 10.1007/BF02120313.  Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.  Google Scholar

[6]

F. Cimolin and M. Discacciati, Navier-Stokes/Forchheimer models for filtration through porous media, Applied Numerical Mathematics, 72 (2013), 205-224.  doi: 10.1016/j.apnum.2013.07.001.  Google Scholar

[7]

M. ChoiG. Son and W. Shim, A level-set method for droplet impact and penetration into a porous medium, Computers & Fluids, 145 (2017), 153-166.  doi: 10.1016/j.compfluid.2016.12.014.  Google Scholar

[8]

D. M. DolbergJ. HelgesenT. H. HanssenI. MagnusG. Saigal and B. K. Pedersen, Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace, Norway, The Leading Edge, 19 (2000), 392-399.  doi: 10.1190/1.1438618.  Google Scholar

[9]

S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress, 48 (1952), 89-94.   Google Scholar

[10]

R. E. Ewing and T. F. Russell, Multistep Galerkin methods along characteristics for convection-diffusion problems, Advances in Computer Methods for Partial Differential Equations, IMACS, 4 (1981), 28-36.   Google Scholar

[11]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

A. Hazen, Some physical properties of sand and gravels with special reference to their use in filtration, 24th Annual Report, Massachusetts State Board of Health, 2 (1893), 539-556.  doi: 10.4159/harvard.9780674600485.c25.  Google Scholar

[13]

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[14]

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.  doi: 10.1016/0017-9310(90)90015-M.  Google Scholar

[15]

M. K. Hubbert, Darcy's law and the field equations of the flow of underground fluids, Hydrological Sciences Journal, 2 (1957), 23-59.   Google Scholar

[16]

M. R. Islam, M. E. Hossain, S. H. Mousavizadegan, S. Mustafiz and J. H. Abour-Kassem, Advance Petroleum Reservoir Simulation, 2nd edition, Scrivener, Canada, 2016. Google Scholar

[17]

G. A. NasilioO. BuzziS. FityusT. S. Yun and D. W. Smith, Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical, and experimental approach, Computers and Geotechnics, 36 (2009), 1200-1206.   Google Scholar

[18]

J. Nečas, Les Méthods Directes en Théories des Équations Elliptiques, Masson, Paris, 1967. Google Scholar

[19]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[20]

D. A. Nield, Modeling fluid flow and heat transfer in a saturated porous medium, J. Appl. Math. Decis. Sci., 4 (2000), 165-173.  doi: 10.1155/S1173912600000122.  Google Scholar

[21]

D. A. Nield and A. Bejan, Convection in Porous Medium, 5th edition, Springer, Switzerland, 2016. Google Scholar

[22]

P. NithiarasuK. N. Seetharamu and T. Sundararajan, Natural convection heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, 40 (1997), 3955-3967.   Google Scholar

[23]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equation, Mathematical modeling and numerical analysis., 50 (2016), 361-380.  doi: 10.1051/m2an/2015047.  Google Scholar

[24]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme of second-order in time for the Navier-Stokes equations, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, 183 (2016), 497-530.   Google Scholar

[25]

H. Notsu and M. Tabata, Stabilized Lagrange-Galerkin schemes of first- and second-order in time for the Navier-Stokes equations, Advances in Computational Fluid-Structure Interaction and Flow Simulation, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, (2016), 331-343.  Google Scholar

[26]

W. Sobieski and A. Trykozko, Darcy's and Forchheimer's laws in practice. Part Ⅰ. The experiment, Technical Sciences, 17 (2014), 321-335.   Google Scholar

[27]

Y. Su and J. H. Davidson, Modeling Approaches to Natural Convection in Porous Medium, SpringerBriefs in Applied Sciences and Technology, Springer, New York, 2015. Google Scholar

[28]

H. Teng and T. S. Zhao, An extension of Darcy's law to non-Stokes flow in porous media, Chemical Engineering Science, 55 (2000), 2727-2735.  doi: 10.1016/S0009-2509(99)00546-1.  Google Scholar

[29]

L. WangL.-P. WangZ. Guo and J. Mi, Volume-average macroscopic equation for fluid flow in moving porous media, International Journal of Heat and Mass Transfer, 82 (2015), 357-368.   Google Scholar

[30]

S. Whitaker, The transport equations for multi-phase systems, Chemical Engineering Science, 28 (1973), 139-147.  doi: 10.1016/0009-2509(73)85094-8.  Google Scholar

show all references

References:
[1]

M. J. Ahammad and J. M. Alam, A numerical study of two-phase miscible flow through porous media with a Lagrangian model, The Journal of Computational Multiphase Flows, 9 (2017), 127-143.  doi: 10.1177/1757482X17701791.  Google Scholar

[2]

K. BoukirY. MadayB. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 25 (1997), 1421-1454.  doi: 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle, Flow, Turbulence and Combustion, 1 (1949), 27-34.  doi: 10.1007/BF02120313.  Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.  Google Scholar

[6]

F. Cimolin and M. Discacciati, Navier-Stokes/Forchheimer models for filtration through porous media, Applied Numerical Mathematics, 72 (2013), 205-224.  doi: 10.1016/j.apnum.2013.07.001.  Google Scholar

[7]

M. ChoiG. Son and W. Shim, A level-set method for droplet impact and penetration into a porous medium, Computers & Fluids, 145 (2017), 153-166.  doi: 10.1016/j.compfluid.2016.12.014.  Google Scholar

[8]

D. M. DolbergJ. HelgesenT. H. HanssenI. MagnusG. Saigal and B. K. Pedersen, Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace, Norway, The Leading Edge, 19 (2000), 392-399.  doi: 10.1190/1.1438618.  Google Scholar

[9]

S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress, 48 (1952), 89-94.   Google Scholar

[10]

R. E. Ewing and T. F. Russell, Multistep Galerkin methods along characteristics for convection-diffusion problems, Advances in Computer Methods for Partial Differential Equations, IMACS, 4 (1981), 28-36.   Google Scholar

[11]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

A. Hazen, Some physical properties of sand and gravels with special reference to their use in filtration, 24th Annual Report, Massachusetts State Board of Health, 2 (1893), 539-556.  doi: 10.4159/harvard.9780674600485.c25.  Google Scholar

[13]

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[14]

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.  doi: 10.1016/0017-9310(90)90015-M.  Google Scholar

[15]

M. K. Hubbert, Darcy's law and the field equations of the flow of underground fluids, Hydrological Sciences Journal, 2 (1957), 23-59.   Google Scholar

[16]

M. R. Islam, M. E. Hossain, S. H. Mousavizadegan, S. Mustafiz and J. H. Abour-Kassem, Advance Petroleum Reservoir Simulation, 2nd edition, Scrivener, Canada, 2016. Google Scholar

[17]

G. A. NasilioO. BuzziS. FityusT. S. Yun and D. W. Smith, Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical, and experimental approach, Computers and Geotechnics, 36 (2009), 1200-1206.   Google Scholar

[18]

J. Nečas, Les Méthods Directes en Théories des Équations Elliptiques, Masson, Paris, 1967. Google Scholar

[19]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[20]

D. A. Nield, Modeling fluid flow and heat transfer in a saturated porous medium, J. Appl. Math. Decis. Sci., 4 (2000), 165-173.  doi: 10.1155/S1173912600000122.  Google Scholar

[21]

D. A. Nield and A. Bejan, Convection in Porous Medium, 5th edition, Springer, Switzerland, 2016. Google Scholar

[22]

P. NithiarasuK. N. Seetharamu and T. Sundararajan, Natural convection heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, 40 (1997), 3955-3967.   Google Scholar

[23]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equation, Mathematical modeling and numerical analysis., 50 (2016), 361-380.  doi: 10.1051/m2an/2015047.  Google Scholar

[24]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme of second-order in time for the Navier-Stokes equations, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, 183 (2016), 497-530.   Google Scholar

[25]

H. Notsu and M. Tabata, Stabilized Lagrange-Galerkin schemes of first- and second-order in time for the Navier-Stokes equations, Advances in Computational Fluid-Structure Interaction and Flow Simulation, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, (2016), 331-343.  Google Scholar

[26]

W. Sobieski and A. Trykozko, Darcy's and Forchheimer's laws in practice. Part Ⅰ. The experiment, Technical Sciences, 17 (2014), 321-335.   Google Scholar

[27]

Y. Su and J. H. Davidson, Modeling Approaches to Natural Convection in Porous Medium, SpringerBriefs in Applied Sciences and Technology, Springer, New York, 2015. Google Scholar

[28]

H. Teng and T. S. Zhao, An extension of Darcy's law to non-Stokes flow in porous media, Chemical Engineering Science, 55 (2000), 2727-2735.  doi: 10.1016/S0009-2509(99)00546-1.  Google Scholar

[29]

L. WangL.-P. WangZ. Guo and J. Mi, Volume-average macroscopic equation for fluid flow in moving porous media, International Journal of Heat and Mass Transfer, 82 (2015), 357-368.   Google Scholar

[30]

S. Whitaker, The transport equations for multi-phase systems, Chemical Engineering Science, 28 (1973), 139-147.  doi: 10.1016/0009-2509(73)85094-8.  Google Scholar

Figure 1.  Representative elementary volume (REV)
Figure 2.  The order of convergence for scheme (22)
Figure 3.  The boundary conditions and the finite element mesh
Figure 4.  Time evolution of velocity magnitude
Figure 5.  Computation domain and porosity value distribution
Figure 6.  Time evolution of magnitude velocity
Table 1.  The unit of important symbols
No Symbol Unit Name of the symbol
[0.5ex] 1 $ u $ $ {\rm m} \cdot {\rm s}^{-1} $ Darcy velocity
2 $ p $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-2} $ Pressure
3 $ \phi $ - porosity
4 $ k_{D} $ $ {\rm kg}^{-1} \cdot {\rm m}^3 \cdot {\rm s} $ Hydraulic conductivity
5 $ K $ $ {\rm m}^2 $ Permeability
6 $ \mu $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-1} $ Dynamic viscosity
7 $ \rho $ $ {\rm kg} \cdot {\rm m}^{-3} $ Density
8 $ d_{p} $ $ {\rm m} $ Particle diameter
9 $ F $ - Forchheimer constant
10 $ B $ $ {\rm kg} \cdot {\rm m}^{-2} \cdot {\rm s}^{-2} $ Drag force per unit volume
No Symbol Unit Name of the symbol
[0.5ex] 1 $ u $ $ {\rm m} \cdot {\rm s}^{-1} $ Darcy velocity
2 $ p $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-2} $ Pressure
3 $ \phi $ - porosity
4 $ k_{D} $ $ {\rm kg}^{-1} \cdot {\rm m}^3 \cdot {\rm s} $ Hydraulic conductivity
5 $ K $ $ {\rm m}^2 $ Permeability
6 $ \mu $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-1} $ Dynamic viscosity
7 $ \rho $ $ {\rm kg} \cdot {\rm m}^{-3} $ Density
8 $ d_{p} $ $ {\rm m} $ Particle diameter
9 $ F $ - Forchheimer constant
10 $ B $ $ {\rm kg} \cdot {\rm m}^{-2} \cdot {\rm s}^{-2} $ Drag force per unit volume
Table 2.  Values of $ Er1 $ and $ Er2 $, their slopes, and CPU times for the problem in Subsection 6.1 by scheme (22)
$ N $ $ Er1 $ $ Er2 $ Slope of $ Er1 $ Slope of $ Er2 $ CPU time [s]
4 $ 3.4\times10^{-1} $ $ 1.6\times10^{-1} $ $ - $ $ - $ 1.9
8 $ 7.1\times10^{-2} $ $ 5.8\times10^{-3} $ 2.26 4.76 16.4
16 $ 1.4\times10^{-2} $ $ 1.2\times10^{-3} $ 2.34 2.30 174.8
32 $ 3.5\times10^{-3} $ $ 2.9\times10^{-4} $ 2.00 2.05 577.4
64 $ 1.0\times10^{-3} $ $ 6.3\times10^{-5} $ 1.81 2.20 5,953.9
128 $ 2.8\times10^{-4} $ $ 1.5\times10^{-5} $ 1.84 2.07 58,150.9
$ N $ $ Er1 $ $ Er2 $ Slope of $ Er1 $ Slope of $ Er2 $ CPU time [s]
4 $ 3.4\times10^{-1} $ $ 1.6\times10^{-1} $ $ - $ $ - $ 1.9
8 $ 7.1\times10^{-2} $ $ 5.8\times10^{-3} $ 2.26 4.76 16.4
16 $ 1.4\times10^{-2} $ $ 1.2\times10^{-3} $ 2.34 2.30 174.8
32 $ 3.5\times10^{-3} $ $ 2.9\times10^{-4} $ 2.00 2.05 577.4
64 $ 1.0\times10^{-3} $ $ 6.3\times10^{-5} $ 1.81 2.20 5,953.9
128 $ 2.8\times10^{-4} $ $ 1.5\times10^{-5} $ 1.84 2.07 58,150.9
[1]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[2]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[3]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[4]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[5]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[6]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[7]

Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147

[8]

Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027

[9]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[10]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[11]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[12]

Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

[13]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[14]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[15]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[16]

Li Li, Yanyan Li, Xukai Yan. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7163-7211. doi: 10.3934/dcds.2019300

[17]

Yinnian He, Kaitai Li. Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 467-482. doi: 10.3934/dcds.1996.2.467

[18]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[19]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[20]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]