March  2021, 14(3): 1197-1212. doi: 10.3934/dcdss.2020234

Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media

1. 

Division of Mathematical and Physics Science, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

2. 

Faculty of Mathematical and Physics, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

3. 

Japan Science and Technology Agency, PRESTO, Kawaguchi 332-0012, Japan

* Corresponding author: Imam Wijaya

Received  January 2019 Revised  May 2019 Published  December 2019

The purposes of this work are to study the $ L^{2} $-stability of a Navier-Stokes type model for non-stationary flow in porous media proposed by Hsu and Cheng in 1989 and to develop a Lagrange-Galerkin scheme with the Adams-Bashforth method to solve that model numerically. The stability estimate is obtained thanks to the presence of a nonlinear drag force term in the model which corresponds to the Forchheimer term. We derive the Lagrange-Galerkin scheme by extending the idea of the method of characteristics to overcome the difficulty which comes from the non-homogeneous porosity. Numerical experiments are conducted to investigate the experimental order of convergence of the scheme. For both simple and complex designs of porosities, our numerical simulations exhibit natural flow profiles which well describe the flow in non-homogeneous porous media.

Citation: Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234
References:
[1]

M. J. Ahammad and J. M. Alam, A numerical study of two-phase miscible flow through porous media with a Lagrangian model, The Journal of Computational Multiphase Flows, 9 (2017), 127-143.  doi: 10.1177/1757482X17701791.  Google Scholar

[2]

K. BoukirY. MadayB. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 25 (1997), 1421-1454.  doi: 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle, Flow, Turbulence and Combustion, 1 (1949), 27-34.  doi: 10.1007/BF02120313.  Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.  Google Scholar

[6]

F. Cimolin and M. Discacciati, Navier-Stokes/Forchheimer models for filtration through porous media, Applied Numerical Mathematics, 72 (2013), 205-224.  doi: 10.1016/j.apnum.2013.07.001.  Google Scholar

[7]

M. ChoiG. Son and W. Shim, A level-set method for droplet impact and penetration into a porous medium, Computers & Fluids, 145 (2017), 153-166.  doi: 10.1016/j.compfluid.2016.12.014.  Google Scholar

[8]

D. M. DolbergJ. HelgesenT. H. HanssenI. MagnusG. Saigal and B. K. Pedersen, Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace, Norway, The Leading Edge, 19 (2000), 392-399.  doi: 10.1190/1.1438618.  Google Scholar

[9]

S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress, 48 (1952), 89-94.   Google Scholar

[10]

R. E. Ewing and T. F. Russell, Multistep Galerkin methods along characteristics for convection-diffusion problems, Advances in Computer Methods for Partial Differential Equations, IMACS, 4 (1981), 28-36.   Google Scholar

[11]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

A. Hazen, Some physical properties of sand and gravels with special reference to their use in filtration, 24th Annual Report, Massachusetts State Board of Health, 2 (1893), 539-556.  doi: 10.4159/harvard.9780674600485.c25.  Google Scholar

[13]

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[14]

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.  doi: 10.1016/0017-9310(90)90015-M.  Google Scholar

[15]

M. K. Hubbert, Darcy's law and the field equations of the flow of underground fluids, Hydrological Sciences Journal, 2 (1957), 23-59.   Google Scholar

[16]

M. R. Islam, M. E. Hossain, S. H. Mousavizadegan, S. Mustafiz and J. H. Abour-Kassem, Advance Petroleum Reservoir Simulation, 2nd edition, Scrivener, Canada, 2016. Google Scholar

[17]

G. A. NasilioO. BuzziS. FityusT. S. Yun and D. W. Smith, Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical, and experimental approach, Computers and Geotechnics, 36 (2009), 1200-1206.   Google Scholar

[18]

J. Nečas, Les Méthods Directes en Théories des Équations Elliptiques, Masson, Paris, 1967. Google Scholar

[19]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[20]

D. A. Nield, Modeling fluid flow and heat transfer in a saturated porous medium, J. Appl. Math. Decis. Sci., 4 (2000), 165-173.  doi: 10.1155/S1173912600000122.  Google Scholar

[21]

D. A. Nield and A. Bejan, Convection in Porous Medium, 5th edition, Springer, Switzerland, 2016. Google Scholar

[22]

P. NithiarasuK. N. Seetharamu and T. Sundararajan, Natural convection heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, 40 (1997), 3955-3967.   Google Scholar

[23]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equation, Mathematical modeling and numerical analysis., 50 (2016), 361-380.  doi: 10.1051/m2an/2015047.  Google Scholar

[24]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme of second-order in time for the Navier-Stokes equations, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, 183 (2016), 497-530.   Google Scholar

[25]

H. Notsu and M. Tabata, Stabilized Lagrange-Galerkin schemes of first- and second-order in time for the Navier-Stokes equations, Advances in Computational Fluid-Structure Interaction and Flow Simulation, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, (2016), 331-343.  Google Scholar

[26]

W. Sobieski and A. Trykozko, Darcy's and Forchheimer's laws in practice. Part Ⅰ. The experiment, Technical Sciences, 17 (2014), 321-335.   Google Scholar

[27]

Y. Su and J. H. Davidson, Modeling Approaches to Natural Convection in Porous Medium, SpringerBriefs in Applied Sciences and Technology, Springer, New York, 2015. Google Scholar

[28]

H. Teng and T. S. Zhao, An extension of Darcy's law to non-Stokes flow in porous media, Chemical Engineering Science, 55 (2000), 2727-2735.  doi: 10.1016/S0009-2509(99)00546-1.  Google Scholar

[29]

L. WangL.-P. WangZ. Guo and J. Mi, Volume-average macroscopic equation for fluid flow in moving porous media, International Journal of Heat and Mass Transfer, 82 (2015), 357-368.   Google Scholar

[30]

S. Whitaker, The transport equations for multi-phase systems, Chemical Engineering Science, 28 (1973), 139-147.  doi: 10.1016/0009-2509(73)85094-8.  Google Scholar

show all references

References:
[1]

M. J. Ahammad and J. M. Alam, A numerical study of two-phase miscible flow through porous media with a Lagrangian model, The Journal of Computational Multiphase Flows, 9 (2017), 127-143.  doi: 10.1177/1757482X17701791.  Google Scholar

[2]

K. BoukirY. MadayB. Métivet and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 25 (1997), 1421-1454.  doi: 10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle, Flow, Turbulence and Combustion, 1 (1949), 27-34.  doi: 10.1007/BF02120313.  Google Scholar

[5]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.  Google Scholar

[6]

F. Cimolin and M. Discacciati, Navier-Stokes/Forchheimer models for filtration through porous media, Applied Numerical Mathematics, 72 (2013), 205-224.  doi: 10.1016/j.apnum.2013.07.001.  Google Scholar

[7]

M. ChoiG. Son and W. Shim, A level-set method for droplet impact and penetration into a porous medium, Computers & Fluids, 145 (2017), 153-166.  doi: 10.1016/j.compfluid.2016.12.014.  Google Scholar

[8]

D. M. DolbergJ. HelgesenT. H. HanssenI. MagnusG. Saigal and B. K. Pedersen, Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace, Norway, The Leading Edge, 19 (2000), 392-399.  doi: 10.1190/1.1438618.  Google Scholar

[9]

S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress, 48 (1952), 89-94.   Google Scholar

[10]

R. E. Ewing and T. F. Russell, Multistep Galerkin methods along characteristics for convection-diffusion problems, Advances in Computer Methods for Partial Differential Equations, IMACS, 4 (1981), 28-36.   Google Scholar

[11]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

A. Hazen, Some physical properties of sand and gravels with special reference to their use in filtration, 24th Annual Report, Massachusetts State Board of Health, 2 (1893), 539-556.  doi: 10.4159/harvard.9780674600485.c25.  Google Scholar

[13]

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[14]

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.  doi: 10.1016/0017-9310(90)90015-M.  Google Scholar

[15]

M. K. Hubbert, Darcy's law and the field equations of the flow of underground fluids, Hydrological Sciences Journal, 2 (1957), 23-59.   Google Scholar

[16]

M. R. Islam, M. E. Hossain, S. H. Mousavizadegan, S. Mustafiz and J. H. Abour-Kassem, Advance Petroleum Reservoir Simulation, 2nd edition, Scrivener, Canada, 2016. Google Scholar

[17]

G. A. NasilioO. BuzziS. FityusT. S. Yun and D. W. Smith, Upscaling of Navier-Stokes equations in porous media: Theoretical, numerical, and experimental approach, Computers and Geotechnics, 36 (2009), 1200-1206.   Google Scholar

[18]

J. Nečas, Les Méthods Directes en Théories des Équations Elliptiques, Masson, Paris, 1967. Google Scholar

[19]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[20]

D. A. Nield, Modeling fluid flow and heat transfer in a saturated porous medium, J. Appl. Math. Decis. Sci., 4 (2000), 165-173.  doi: 10.1155/S1173912600000122.  Google Scholar

[21]

D. A. Nield and A. Bejan, Convection in Porous Medium, 5th edition, Springer, Switzerland, 2016. Google Scholar

[22]

P. NithiarasuK. N. Seetharamu and T. Sundararajan, Natural convection heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, 40 (1997), 3955-3967.   Google Scholar

[23]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equation, Mathematical modeling and numerical analysis., 50 (2016), 361-380.  doi: 10.1051/m2an/2015047.  Google Scholar

[24]

H. Notsu and M. Tabata, Error estimates of a stabilized Lagrange-Galerkin scheme of second-order in time for the Navier-Stokes equations, Mathematical Fluid Dynamics, Present and Future, Springer Proc. Math. Stat., Springer, 183 (2016), 497-530.   Google Scholar

[25]

H. Notsu and M. Tabata, Stabilized Lagrange-Galerkin schemes of first- and second-order in time for the Navier-Stokes equations, Advances in Computational Fluid-Structure Interaction and Flow Simulation, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, (2016), 331-343.  Google Scholar

[26]

W. Sobieski and A. Trykozko, Darcy's and Forchheimer's laws in practice. Part Ⅰ. The experiment, Technical Sciences, 17 (2014), 321-335.   Google Scholar

[27]

Y. Su and J. H. Davidson, Modeling Approaches to Natural Convection in Porous Medium, SpringerBriefs in Applied Sciences and Technology, Springer, New York, 2015. Google Scholar

[28]

H. Teng and T. S. Zhao, An extension of Darcy's law to non-Stokes flow in porous media, Chemical Engineering Science, 55 (2000), 2727-2735.  doi: 10.1016/S0009-2509(99)00546-1.  Google Scholar

[29]

L. WangL.-P. WangZ. Guo and J. Mi, Volume-average macroscopic equation for fluid flow in moving porous media, International Journal of Heat and Mass Transfer, 82 (2015), 357-368.   Google Scholar

[30]

S. Whitaker, The transport equations for multi-phase systems, Chemical Engineering Science, 28 (1973), 139-147.  doi: 10.1016/0009-2509(73)85094-8.  Google Scholar

Figure 1.  Representative elementary volume (REV)
Figure 2.  The order of convergence for scheme (22)
Figure 3.  The boundary conditions and the finite element mesh
Figure 4.  Time evolution of velocity magnitude
Figure 5.  Computation domain and porosity value distribution
Figure 6.  Time evolution of magnitude velocity
Table 1.  The unit of important symbols
No Symbol Unit Name of the symbol
[0.5ex] 1 $ u $ $ {\rm m} \cdot {\rm s}^{-1} $ Darcy velocity
2 $ p $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-2} $ Pressure
3 $ \phi $ - porosity
4 $ k_{D} $ $ {\rm kg}^{-1} \cdot {\rm m}^3 \cdot {\rm s} $ Hydraulic conductivity
5 $ K $ $ {\rm m}^2 $ Permeability
6 $ \mu $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-1} $ Dynamic viscosity
7 $ \rho $ $ {\rm kg} \cdot {\rm m}^{-3} $ Density
8 $ d_{p} $ $ {\rm m} $ Particle diameter
9 $ F $ - Forchheimer constant
10 $ B $ $ {\rm kg} \cdot {\rm m}^{-2} \cdot {\rm s}^{-2} $ Drag force per unit volume
No Symbol Unit Name of the symbol
[0.5ex] 1 $ u $ $ {\rm m} \cdot {\rm s}^{-1} $ Darcy velocity
2 $ p $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-2} $ Pressure
3 $ \phi $ - porosity
4 $ k_{D} $ $ {\rm kg}^{-1} \cdot {\rm m}^3 \cdot {\rm s} $ Hydraulic conductivity
5 $ K $ $ {\rm m}^2 $ Permeability
6 $ \mu $ $ {\rm kg} \cdot {\rm m}^{-1}\cdot {\rm s}^{-1} $ Dynamic viscosity
7 $ \rho $ $ {\rm kg} \cdot {\rm m}^{-3} $ Density
8 $ d_{p} $ $ {\rm m} $ Particle diameter
9 $ F $ - Forchheimer constant
10 $ B $ $ {\rm kg} \cdot {\rm m}^{-2} \cdot {\rm s}^{-2} $ Drag force per unit volume
Table 2.  Values of $ Er1 $ and $ Er2 $, their slopes, and CPU times for the problem in Subsection 6.1 by scheme (22)
$ N $ $ Er1 $ $ Er2 $ Slope of $ Er1 $ Slope of $ Er2 $ CPU time [s]
4 $ 3.4\times10^{-1} $ $ 1.6\times10^{-1} $ $ - $ $ - $ 1.9
8 $ 7.1\times10^{-2} $ $ 5.8\times10^{-3} $ 2.26 4.76 16.4
16 $ 1.4\times10^{-2} $ $ 1.2\times10^{-3} $ 2.34 2.30 174.8
32 $ 3.5\times10^{-3} $ $ 2.9\times10^{-4} $ 2.00 2.05 577.4
64 $ 1.0\times10^{-3} $ $ 6.3\times10^{-5} $ 1.81 2.20 5,953.9
128 $ 2.8\times10^{-4} $ $ 1.5\times10^{-5} $ 1.84 2.07 58,150.9
$ N $ $ Er1 $ $ Er2 $ Slope of $ Er1 $ Slope of $ Er2 $ CPU time [s]
4 $ 3.4\times10^{-1} $ $ 1.6\times10^{-1} $ $ - $ $ - $ 1.9
8 $ 7.1\times10^{-2} $ $ 5.8\times10^{-3} $ 2.26 4.76 16.4
16 $ 1.4\times10^{-2} $ $ 1.2\times10^{-3} $ 2.34 2.30 174.8
32 $ 3.5\times10^{-3} $ $ 2.9\times10^{-4} $ 2.00 2.05 577.4
64 $ 1.0\times10^{-3} $ $ 6.3\times10^{-5} $ 1.81 2.20 5,953.9
128 $ 2.8\times10^{-4} $ $ 1.5\times10^{-5} $ 1.84 2.07 58,150.9
[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[10]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[14]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[15]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[18]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[19]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[20]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]