\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The inverse volatility problem for American options

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • The problem of determining equity volatility from a knowledge of American option prices for a range of exercise (strike) prices and expirations is solved by minimization of a convex functional.

    Mathematics Subject Classification: Primary: 35K10; Secondary: 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Flowchart

    Figure 2.  GOOGLE put option data, 19th April, 2013

    Figure 4.  Maturity interval $ 14\le T\le 21 $: iterations of $ g(S_0, t_0, K, T) $

    Figure 5.  The functional $ G $ for maturity $ 14\le T\le 21 $

    Figure 3.  Recovered Google Volatility

    Figure 6.  Comparing option and recovered prices from the Dupire Equation

  • [1] Y. Achdou, G. Indragoby and O. Pironneau, Volatility calibration with American options, Methods Appl. Anal., 11 (2004), 533–556, https://projecteuclid.org/euclid.maa/1144939946. doi: 10.4310/MAA.2004.v11.n4.a6.
    [2] A. Alfonsi and B. Jourdain, Exact volatility calibration based on a Dupire-type Call-Put duality for perpetual American options, Nonlinear Differ. Equ. Appl., 16 (2009), 523-554.  doi: 10.1007/s00030-009-0027-8.
    [3] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.
    [4] I. Bouchouev and V. Isakov, Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets, Inverse Problems, 15 (1999), R95–R116. doi: 10.1088/0266-5611/15/3/201.
    [5] P. Carr and A. Hirsa, Why be backward?, Risk, 16 (2003), 103-107. 
    [6] P. Carr and A. Hirsa, Forward evolution equations for knock-out options, in Advances in Mathematical Finance, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2007,195–217. doi: 10.1007/978-0-8176-4545-8_11.
    [7] S. Crépey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), 91-127.  doi: 10.1088/0266-5611/19/1/306.
    [8] B. Dupire, Pricing with a smile, RISK, 7 (1994), 18-20. 
    [9] E. Fama, The behavior of stock-market prices, Journal of Business, 38 (1965), 34-105.  doi: 10.1086/294743.
    [10] P. Hartman, Ordinary Differential Equations, S. M. Hartman, Baltimore, Md., 1973.
    [11] J. Huang and J.-S. Pang, A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options, Journal of Computational Finance, 4 (2000), 21-56.  doi: 10.21314/JCF.2000.054.
    [12] V. A. Kholodnyi, A nonlinear partial differential equation for American options in the entire domain of the state variable, in Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), 30 (1997), 5059–5070. doi: 10.1016/S0362-546X(97)00207-1.
    [13] I. Knowles, Uniqueness for an elliptic inverse problem, SIAM J. Appl. Math., 59 (1999), 1356-1370.  doi: 10.1137/S0036139997327782.
    [14] I. Knowles and M. A. LaRussa, Conditional well-posedness for an elliptic inverse problem, SIAM J. Appl. Math., 71 (2011), 952-971.  doi: 10.1137/09077566X.
    [15] I. Knowles and M. A. LaRussa, Lavrentiev's theorem and error estimation in elliptic inverse problems, in Spectral Theory, Function Spaces and Inequalities, vol. 219 of Oper. Theory Adv. Appl., Birkhäuser/Springer Basel AG, Basel, 2012, 91–103. doi: 10.1007/978-3-0348-0263-5_6.
    [16] I. KnowlesT. Le and A. Yan, On the recovery of multiple flow parameters from transient head data, J. Comp. Appl. Math., 169 (2004), 1-15.  doi: 10.1016/j.cam.2003.10.013.
    [17] I. KnowlesM. TeubnerA. YanP. Rasser and J. Lee, Inverse groundwater modelling in the Willunga Basin, South Australia, Hydrogeology Journal, 15 (2007), 1107-1118.  doi: 10.1007/s10040-007-0189-6.
    [18] I. Knowles and R. Wallace, A variational method for numerical differentiation, Numerische Mathematik, 70 (1995), 91-110.  doi: 10.1007/s002110050111.
    [19] S. Kon, Models of stock returns - a comparison, Journal of Finance, 39 (1984), 147-165. 
    [20] G. W. Kutner, Determining the implied volatility for American options using the QAM, The Financial Review, 33 (1998), 119-130.  doi: 10.1111/j.1540-6288.1998.tb01611.x.
    [21] O. A. Ladyzhenskaya and N. N. Uraltzeva, Linear and Quasilinear Equations of Parabolic Type, Second edition, revised. Izdat. "Nauka", Moscow, 1973.
    [22] D. Madan and E. Seneta, The variance gamma model for share market returns, Journal of Business, 63 (1990), 511-524.  doi: 10.1086/296519.
    [23] B. Mandelbrot, The variation of certain speculative prices, Journal of Business, 36 (1963), 394-41. 
    [24] J. W. Neuberger, Sobolev Gradients and Differential Equations, vol. 1670 of Lecture Notes in Mathematics, 2nd edition, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04041-2.
    [25] R. Officer, The distribution of stock returns, Journal of the American Statistical Association, 67 (1972), 807-812.  doi: 10.1080/01621459.1972.10481297.
    [26] P. Praetz, The distribution of share price changes, Journal of Business, 45 (1972), 49-55.  doi: 10.1086/295425.
    [27] S. Press, A compound events model for security prices, Journal of Business, 40 (1967), 317-335.  doi: 10.1086/294980.
    [28] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C, 2nd edition, Cambridge University Press, Cambridge, 1992, The art of scientific computing.
    [29] A. Sen, An optimization approach to computing the implied volatility of American options, Optimization Online Digest.
    [30] P. WilmottS. Howison and  J. DewynneOption Pricing, Oxford Financial Press, Oxford, 1993. 
    [31] E. Zeidler, Nonlinear Functional Analysis and its Applications. III, Springer-Verlag, New York, 1985, Variational Methods and Optimization, Translated from the German by Leo F. Boron. doi: 10.1007/978-1-4612-5020-3.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(686) PDF downloads(697) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return