December  2020, 13(12): 3335-3345. doi: 10.3934/dcdss.2020241

Existence of minimizers for some quasilinear elliptic problems

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

* Corresponding author: Anna Maria Candela

Dedicated to Gisèle Ruiz Goldstein on the occasion of her 60th birthday

Received  December 2018 Revised  June 2019 Published  January 2020

Fund Project: Partially supported by Fondi di Ricerca di Ateneo 2015/16 and Research Funds INdAM-GNAMPA Project 2018 "Problemi ellittici semilineari: alcune idee variazionali"

The aim of this paper is investigating the existence of at least one weak bounded solution of the quasilinear elliptic problem
$ \left\{ \begin{array}{ll} - {\rm{div}} (a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ f(x,u) &\hbox{in $\Omega$,}\\ u\ = \ 0 & \hbox{on $\partial\Omega$,} \end{array} \right. $
where
$ \Omega \subset \mathbb R^N $
is an open bounded domain and
$ A(x,t,\xi) $
,
$ f(x,t) $
are given real functions, with
$ A_t = \frac{\partial A}{\partial t} $
,
$ a = \nabla_\xi A $
.
We prove that, even if
$ A(x,t,\xi) $
makes the variational approach more difficult, the functional associated to such a problem is bounded from below and attains its infimum when the growth of the nonlinear term
$ f(x,t) $
is "controlled" by
$ A(x,t,\xi) $
. Moreover, stronger assumptions allow us to find the existence of at least one positive solution.
We use a suitable Minimum Principle based on a weak version of the Cerami–Palais–Smale condition.
Citation: Anna Maria Candela, Addolorata Salvatore. Existence of minimizers for some quasilinear elliptic problems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3335-3345. doi: 10.3934/dcdss.2020241
References:
[1]

D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.  doi: 10.1007/BF00379536.  Google Scholar

[2]

D. ArcoyaL. Boccardo and L. Orsina, Critical points for functionals with quasilinear singular Euler–Lagrange equations, Calc. Var. Partial Differential Equations, 47 (2013), 159-180.  doi: 10.1007/s00526-012-0514-3.  Google Scholar

[3]

R. BartoloA. M. Candela and A. Salvatore, $p$–Laplacian problems with nonlinearities interacting with the spectrum, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1701-1721.  doi: 10.1007/s00030-013-0226-1.  Google Scholar

[4]

L. Boccardo and B. Pellacci, Critical points of non–regular integral functionals, Rev. Math. Iberoam., 34 (2018), 1001-1020.  doi: 10.4171/RMI/1013.  Google Scholar

[5]

A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.  doi: 10.1007/s00526-008-0193-2.  Google Scholar

[6]

A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dynam. Syst., 2009 (2009), 133-142.   Google Scholar

[7]

A. M. Candela, G. Palmieri and A. Salvatore, Some results on supercritical quasilinear elliptic problems, Commun. Contemp. Math., (2019) 1950075 (20 pages). doi: 10.1142/S0219199719500755.  Google Scholar

[8]

A. M. CandelaG. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.  doi: 10.1016/j.na.2018.02.011.  Google Scholar

[9]

A. M. Candela and A. Salvatore, Positive solutions for a generalized $p$–Laplacian type problem, Discrete Contin. Dyn. Syst. Ser. S, (to appear). doi: 10.3934/dcdss.2020151.  Google Scholar

[10]

A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.  doi: 10.7494/OpMath.2019.39.2.175.  Google Scholar

[11]

A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.  doi: 10.12775/TMNA.1995.050.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

G. DincaP. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$–Laplacian, Portugaliae Mathematica, 58 (2001), 339-378.   Google Scholar

[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.   Google Scholar
[15]

P. Lindqvist, On the equation $ {\rm {div}} (|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$, Proc. Am. Math. Soc., 109 (1990), 157-164.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[17]

N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406.  Google Scholar

show all references

References:
[1]

D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.  doi: 10.1007/BF00379536.  Google Scholar

[2]

D. ArcoyaL. Boccardo and L. Orsina, Critical points for functionals with quasilinear singular Euler–Lagrange equations, Calc. Var. Partial Differential Equations, 47 (2013), 159-180.  doi: 10.1007/s00526-012-0514-3.  Google Scholar

[3]

R. BartoloA. M. Candela and A. Salvatore, $p$–Laplacian problems with nonlinearities interacting with the spectrum, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1701-1721.  doi: 10.1007/s00030-013-0226-1.  Google Scholar

[4]

L. Boccardo and B. Pellacci, Critical points of non–regular integral functionals, Rev. Math. Iberoam., 34 (2018), 1001-1020.  doi: 10.4171/RMI/1013.  Google Scholar

[5]

A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.  doi: 10.1007/s00526-008-0193-2.  Google Scholar

[6]

A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dynam. Syst., 2009 (2009), 133-142.   Google Scholar

[7]

A. M. Candela, G. Palmieri and A. Salvatore, Some results on supercritical quasilinear elliptic problems, Commun. Contemp. Math., (2019) 1950075 (20 pages). doi: 10.1142/S0219199719500755.  Google Scholar

[8]

A. M. CandelaG. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.  doi: 10.1016/j.na.2018.02.011.  Google Scholar

[9]

A. M. Candela and A. Salvatore, Positive solutions for a generalized $p$–Laplacian type problem, Discrete Contin. Dyn. Syst. Ser. S, (to appear). doi: 10.3934/dcdss.2020151.  Google Scholar

[10]

A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.  doi: 10.7494/OpMath.2019.39.2.175.  Google Scholar

[11]

A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.  doi: 10.12775/TMNA.1995.050.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

G. DincaP. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$–Laplacian, Portugaliae Mathematica, 58 (2001), 339-378.   Google Scholar

[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.   Google Scholar
[15]

P. Lindqvist, On the equation $ {\rm {div}} (|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$, Proc. Am. Math. Soc., 109 (1990), 157-164.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[17]

N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[13]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[17]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[18]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[19]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[20]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (123)
  • HTML views (330)
  • Cited by (0)

Other articles
by authors

[Back to Top]