December  2020, 13(12): 3335-3345. doi: 10.3934/dcdss.2020241

Existence of minimizers for some quasilinear elliptic problems

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

* Corresponding author: Anna Maria Candela

Dedicated to Gisèle Ruiz Goldstein on the occasion of her 60th birthday

Received  December 2018 Revised  June 2019 Published  January 2020

Fund Project: Partially supported by Fondi di Ricerca di Ateneo 2015/16 and Research Funds INdAM-GNAMPA Project 2018 "Problemi ellittici semilineari: alcune idee variazionali"

The aim of this paper is investigating the existence of at least one weak bounded solution of the quasilinear elliptic problem
$ \left\{ \begin{array}{ll} - {\rm{div}} (a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ f(x,u) &\hbox{in $\Omega$,}\\ u\ = \ 0 & \hbox{on $\partial\Omega$,} \end{array} \right. $
where
$ \Omega \subset \mathbb R^N $
is an open bounded domain and
$ A(x,t,\xi) $
,
$ f(x,t) $
are given real functions, with
$ A_t = \frac{\partial A}{\partial t} $
,
$ a = \nabla_\xi A $
.
We prove that, even if
$ A(x,t,\xi) $
makes the variational approach more difficult, the functional associated to such a problem is bounded from below and attains its infimum when the growth of the nonlinear term
$ f(x,t) $
is "controlled" by
$ A(x,t,\xi) $
. Moreover, stronger assumptions allow us to find the existence of at least one positive solution.
We use a suitable Minimum Principle based on a weak version of the Cerami–Palais–Smale condition.
Citation: Anna Maria Candela, Addolorata Salvatore. Existence of minimizers for some quasilinear elliptic problems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3335-3345. doi: 10.3934/dcdss.2020241
References:
[1]

D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.  doi: 10.1007/BF00379536.  Google Scholar

[2]

D. ArcoyaL. Boccardo and L. Orsina, Critical points for functionals with quasilinear singular Euler–Lagrange equations, Calc. Var. Partial Differential Equations, 47 (2013), 159-180.  doi: 10.1007/s00526-012-0514-3.  Google Scholar

[3]

R. BartoloA. M. Candela and A. Salvatore, $p$–Laplacian problems with nonlinearities interacting with the spectrum, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1701-1721.  doi: 10.1007/s00030-013-0226-1.  Google Scholar

[4]

L. Boccardo and B. Pellacci, Critical points of non–regular integral functionals, Rev. Math. Iberoam., 34 (2018), 1001-1020.  doi: 10.4171/RMI/1013.  Google Scholar

[5]

A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.  doi: 10.1007/s00526-008-0193-2.  Google Scholar

[6]

A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dynam. Syst., 2009 (2009), 133-142.   Google Scholar

[7]

A. M. Candela, G. Palmieri and A. Salvatore, Some results on supercritical quasilinear elliptic problems, Commun. Contemp. Math., (2019) 1950075 (20 pages). doi: 10.1142/S0219199719500755.  Google Scholar

[8]

A. M. CandelaG. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.  doi: 10.1016/j.na.2018.02.011.  Google Scholar

[9]

A. M. Candela and A. Salvatore, Positive solutions for a generalized $p$–Laplacian type problem, Discrete Contin. Dyn. Syst. Ser. S, (to appear). doi: 10.3934/dcdss.2020151.  Google Scholar

[10]

A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.  doi: 10.7494/OpMath.2019.39.2.175.  Google Scholar

[11]

A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.  doi: 10.12775/TMNA.1995.050.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

G. DincaP. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$–Laplacian, Portugaliae Mathematica, 58 (2001), 339-378.   Google Scholar

[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.   Google Scholar
[15]

P. Lindqvist, On the equation $ {\rm {div}} (|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$, Proc. Am. Math. Soc., 109 (1990), 157-164.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[17]

N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406.  Google Scholar

show all references

References:
[1]

D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.  doi: 10.1007/BF00379536.  Google Scholar

[2]

D. ArcoyaL. Boccardo and L. Orsina, Critical points for functionals with quasilinear singular Euler–Lagrange equations, Calc. Var. Partial Differential Equations, 47 (2013), 159-180.  doi: 10.1007/s00526-012-0514-3.  Google Scholar

[3]

R. BartoloA. M. Candela and A. Salvatore, $p$–Laplacian problems with nonlinearities interacting with the spectrum, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1701-1721.  doi: 10.1007/s00030-013-0226-1.  Google Scholar

[4]

L. Boccardo and B. Pellacci, Critical points of non–regular integral functionals, Rev. Math. Iberoam., 34 (2018), 1001-1020.  doi: 10.4171/RMI/1013.  Google Scholar

[5]

A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.  doi: 10.1007/s00526-008-0193-2.  Google Scholar

[6]

A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dynam. Syst., 2009 (2009), 133-142.   Google Scholar

[7]

A. M. Candela, G. Palmieri and A. Salvatore, Some results on supercritical quasilinear elliptic problems, Commun. Contemp. Math., (2019) 1950075 (20 pages). doi: 10.1142/S0219199719500755.  Google Scholar

[8]

A. M. CandelaG. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.  doi: 10.1016/j.na.2018.02.011.  Google Scholar

[9]

A. M. Candela and A. Salvatore, Positive solutions for a generalized $p$–Laplacian type problem, Discrete Contin. Dyn. Syst. Ser. S, (to appear). doi: 10.3934/dcdss.2020151.  Google Scholar

[10]

A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.  doi: 10.7494/OpMath.2019.39.2.175.  Google Scholar

[11]

A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.  doi: 10.12775/TMNA.1995.050.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equations: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

G. DincaP. Jebelean and J. Mawhin, Variational and topological methods for Dirichlet problems with $p$–Laplacian, Portugaliae Mathematica, 58 (2001), 339-378.   Google Scholar

[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.   Google Scholar
[15]

P. Lindqvist, On the equation $ {\rm {div}} (|\nabla u|^{p-2}\nabla u) + \lambda|u|^{p-2}u=0$, Proc. Am. Math. Soc., 109 (1990), 157-164.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[17]

N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[3]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[4]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[5]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[6]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[9]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[12]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[13]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[14]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[15]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[16]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[17]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[18]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[19]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (138)
  • HTML views (333)
  • Cited by (0)

Other articles
by authors

[Back to Top]