\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The surface diffusion and the Willmore flow for uniformly regular hypersurfaces

  • * Corresponding author: Gieri Simonett

    * Corresponding author: Gieri Simonett

This work was supported by a grant from the Simons Foundation (#426729, Gieri Simonett)

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • We consider the surface diffusion and Willmore flows acting on a general class of (possibly non–compact) hypersurfaces parameterized over a uniformly regular reference manifold possessing a tubular neighborhood with uniform radius. The surface diffusion and Willmore flows each give rise to a fourth–order quasilinear parabolic equation with nonlinear terms satisfying a specific singular structure. We establish well–posedness of both flows for initial surfaces that are $ C^{1+\alpha} $–regular and parameterized over a uniformly regular hypersurface. For the Willmore flow, we also show long–term existence for initial surfaces which are $ C^{1+\alpha} $–close to a sphere, and we prove that these solutions become spherical as time goes to infinity.

    Mathematics Subject Classification: Primary: 35K55, 53C44; Secondary: 54C35, 35B65, 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.   

  • [1] H. Amann, Linear and Quasilinear Parabolic Problems: Volume Ⅰ., Abstract Linear Theory. Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.
    [2] H. Amann, Elliptic operators with infinite-dimensional state spaces, J. Evol. Equ., 1 (2001), 143-188.  doi: 10.1007/PL00001367.
    [3] H. Amann, Function spaces on singular manifolds, Math. Nachr., 286 (2013), 436-475.  doi: 10.1002/mana.201100157.
    [4] H. Amann, Anisotropic function spaces on singular manifolds., arXiv: 1204.0606.
    [5] H. Amann, Uniformly regular and singular Riemannian manifolds, In: Elliptic and Parabolic Equations, 1–43, Springer Proc. Math. Stat., 119, Springer, Cham, 2015. doi: 10.1007/978-3-319-12547-3_1.
    [6] H. Amann, Cauchy problems for parabolic equations in Sobolev-Slobodeckii and Hölder spaces on uniformly regular Riemannian manifolds, J. Evol. Equ., 17 (2017), 51-100.  doi: 10.1007/s00028-016-0347-1.
    [7] H. AmannM. Hieber and G. Simonett, Bounded $H_\infty$-calculus for elliptic operators., Differential Integral Equations, 7 (1994), 613-653. 
    [8] T. Asai, Quasilinear parabolic equation and its applications to fourth order equations with rough initial data, J. Math. Sci. Univ. Tokyo., 19 (2012), 507-532. 
    [9] Y. Bernard, G. Wheeler and V.-M. Wheeler, Concentration-compactness and finite-time singularities for Chen's flow, arXiv: 1706.01707.
    [10] S. Blatt, A singular example for the Willmore flow, Analysis (Munich), 29 (2009), 407-430. 
    [11] Ph. Clément and G. Simonett, Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations, J. Evol. Equ., 1 (2001), 39-67.  doi: 10.1007/PL00001364.
    [12] R. Denk, M. Hieber and J. Prüss, $\mathcal{R}$-boundedness, Fourier multipliers and Problems of Elliptic and Parabolic Type, Mem. Amer. Math. Soc., 166 (2003), ⅷ+114 pp. doi: 10.1090/memo/0788.
    [13] M. DisconziY. Shao and G. Simonett, Some remarks on uniformly regular Riemannian manifolds, Math. Nachr., 289 (2016), 232-242.  doi: 10.1002/mana.201400354.
    [14] J. EscherU. F. Mayer and G. Simonett, The surface diffusion flow for immersed hypersurfaces, SIAM J. Math. Anal., 29 (1998), 1419-1433.  doi: 10.1137/S0036141097320675.
    [15] J. Escher and P. B. Mucha, The surface diffusion flow on rough phase spaces, Discrete Contin. Dyn. Syst., 26 (2010), 431-453.  doi: 10.3934/dcds.2010.26.431.
    [16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
    [17] H. Koch and T. Lamm, Geometric flows with rough initial data, Asian J. Math., 16 (2012), 209-235.  doi: 10.4310/AJM.2012.v16.n2.a3.
    [18] E. Kuwert and R. Schätzle, The Willmore flow with small initial energy,, J. Differential Geom., 57 (2001), 409-441.  doi: 10.4310/jdg/1090348128.
    [19] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional,, Comm. Anal. Geom., 10 (2002), 307-339.  doi: 10.4310/CAG.2002.v10.n2.a4.
    [20] E. Kuwert and R. Schätzle, Removability of point singularities of Willmore surfaces,, Ann. of Math. (2), 160 (2004), 315-357.  doi: 10.4007/annals.2004.160.315.
    [21] J. LeCrone and G. Simonett, On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow, SIAM J. Math. Anal., 45 (2013), 2834-2869. 
    [22] J. LeCrone and G. Simonett, On the flow of non-axisymmetric perturbations of cylinders via surface diffusion, J. Differential Equations, 260 (2016), 5510-5531.  doi: 10.1016/j.jde.2015.12.008.
    [23] J. LeCrone and G. Simonett, On quasilinear parabolic equations and continuous maximal regularity, Evolution Equations & Control Theory, 9 (2020), 61-86.  doi: 10.3934/eect.2020017.
    [24] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, Basel, 1995.
    [25] U. F. Mayer and G. Simonett, A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow, Interfaces Free Bound, 4 (2002), 89-109.  doi: 10.4171/IFB/54.
    [26] U. F. Mayer and G. Simonett, Self-intersections for Willmore flow., Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Levico Terme, 2000), 341–348, Progr. Nonlinear Differential Equations Appl., 55, Birkhäuser, Basel, 2003.
    [27] J. McCoy and G. Wheeler, Finite time singularities for the locally constrained Willmore flow of surfaces, Comm. Anal. Geom., 24 (2016), 843-886.  doi: 10.4310/CAG.2016.v24.n4.a7.
    [28] J. McCoyG. Wheeler and G. Williams, Lifespan theorem for constrained surface diffusion flows, Math. Z., 269 (2011), 147-178.  doi: 10.1007/s00209-010-0720-7.
    [29] J. Prüss and G. Simonett, On the manifold of closed hypersurfaces in $\mathbb{R}^n$, Discrete Contin. Dyn. Syst., 33 (2013), 5407-5428.  doi: 10.3934/dcds.2013.33.5407.
    [30] J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics. Birkhäuser Verlag, 2016. doi: 10.1007/978-3-319-27698-4.
    [31] J. Prüss and M. Wilke, Addendum to the paper "On quasilinear parabolic evolution equations in weighted $L_p$–spaces Ⅱ", J. Evol. Equ., 17 (2017), 1381-1388.  doi: 10.1007/s00028-017-0382-6.
    [32] H. Samelson, Orientability of hypersurfaces in $\mathbb{R}^n$, Proc. Amer. Math. Soc., 22 (1969), 301-302.  doi: 10.2307/2036976.
    [33] Y. Shao, Real analytic solutions to the Willmore flow, Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, Electron. J. Diff. Eqns., Conf., 20 (2013), 151-164. 
    [34] Y. Shao, A family of parameter-dependent diffeomorphisms acting on function spaces over a Riemannian manifold and applications to geometric flows, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 45-85.  doi: 10.1007/s00030-014-0275-0.
    [35] Y. Shao and G. Simonett, Continuous maximal regularity on uniformly regular Riemannian manifolds, J. Evol. Equ., 1 (2014), 211-248.  doi: 10.1007/s00028-014-0218-6.
    [36] G. Simonett, The Willmore flow near spheres, Differential Integral Equations, 14 (2001), 1005-1014. 
    [37] G. Wheeler, Lifespan theorem for simple constrained surface diffusion flows, J. Math. Anal. Appl., 375 (2011), 685-698.  doi: 10.1016/j.jmaa.2010.09.043.
    [38] G. Wheeler, Surface diffusion flow near spheres, Calc. Var. Partial Differential Equations, 44 (2012), 131-151.  doi: 10.1007/s00526-011-0429-4.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(530) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return