• Previous Article
    On subdiagonal rational Padé approximations and the Brenner-Thomée approximation theorem for operator semigroups
  • DCDS-S Home
  • This Issue
  • Next Article
    Modeling epidemic outbreaks in geographical regions: Seasonal influenza in Puerto Rico
December  2020, 13(12): 3551-3563. doi: 10.3934/dcdss.2020244

Spectra of structured diffusive population equations with generalized Wentzell-Robin boundary conditions and related topics

Laboratoire de Mathématiques, CNRS-UMR 6623, Université de Bourgogne Franche-Comté, 16 Route de Gray, Besançon, 25030, France

* Corresponding author: Mustapha Mokhtar-Kharroubi

Received  January 2019 Published  January 2020

This paper provides two different extensions of a previous joint work "Time asymptotics of structured populations with diffusion and dynamic boundary conditions; Discrete Cont Dyn Syst, Series B, 23 (10) (2018)" devoted to asynchronous exponential asymptotics for bounded and weakly compact reproduction operators. The first extension considers bounded non weakly compact reproduction operators while the second extension deals with unbounded kernel reproduction operators and needs, as a preliminary step, a new generation result.

Citation: Mustapha Mokhtar-Kharroubi. Spectra of structured diffusive population equations with generalized Wentzell-Robin boundary conditions and related topics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3551-3563. doi: 10.3934/dcdss.2020244
References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.  Google Scholar

[2]

P. Clement, H. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter., One-Parameter Semigroups, Vol. 5, North-Holland Publ Co., Amsterdam, 1987.  Google Scholar

[3]

W. Desch, Perturbations of positive semigroups in AL-spaces, unpublished manuscript, 1988. Google Scholar

[4]

N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, John Wiley & Sons, 1988. Google Scholar

[5]

J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Mathematical Biosciences and Engineering, 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.  Google Scholar

[6]

T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322.  doi: 10.1007/BF02790238.  Google Scholar

[7]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, Siam J Appl Math, 19 (1970), 607-628.  doi: 10.1137/0119060.  Google Scholar

[8]

M. Mokhtar-Kharroubi, On the convex compactness property for the strong operator topology and related topics, Math. Methods. Appl. Sci., 27 (2004), 687-701.  doi: 10.1002/mma.497.  Google Scholar

[9]

M. Mokhtar-Kharroubi, On Schrödinger semigroups and related topics, J. Funct. Anal, 256 (2009), 1998-2025.  doi: 10.1016/j.jfa.2008.11.012.  Google Scholar

[10]

M. Mokhtar-Kharroubi and Q. Richard, Time asymptotics of structured populations with diffusion and dynamic boundary conditions, Discrete Cont Dyn Syst, Series B, 23 (2018), 4087-4116.   Google Scholar

[11]

R. Nagel (Ed), One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, Springer, 1986.  Google Scholar

[12]

B. de. Pagter, Irreducible compact operators, Math. Z, 192 (1986), 149–153. doi: 10.1007/BF01162028.  Google Scholar

[13]

A. Rhandi, Dyson-Phillips expansion and unbounded perturbations of linear $C_{0}$-semigroups, J. Computational Appl Math, 44 (1992), 339-349.  doi: 10.1016/0377-0427(92)90005-I.  Google Scholar

[14]

G. Scluchtermann, On weakly compact operators, Math. Ann., 292 (1992), 263-266.  doi: 10.1007/BF01444620.  Google Scholar

[15]

J. Voigt, On resolvent positive operators and positive $ C_{0} $-semigroups in AL-spaces, Semigroup Forum, 38 (1989), 263-266.  doi: 10.1007/BF02573236.  Google Scholar

[16]

J. Voigt, On the convex compactness property for the strong operator topology, Note.di. Mat., 12 (1992), 259-269.   Google Scholar

[17]

L. Weis, A short proof for the stability theorem for positive semigroups on $ Lp(\mu) $, Proceedings of the Amer Math Soc, 126 (1998), 3253-3256.  doi: 10.1090/S0002-9939-98-04612-7.  Google Scholar

show all references

References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.  Google Scholar

[2]

P. Clement, H. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter., One-Parameter Semigroups, Vol. 5, North-Holland Publ Co., Amsterdam, 1987.  Google Scholar

[3]

W. Desch, Perturbations of positive semigroups in AL-spaces, unpublished manuscript, 1988. Google Scholar

[4]

N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory, John Wiley & Sons, 1988. Google Scholar

[5]

J. Z. Farkas and P. Hinow, Physiologically structured populations with diffusion and dynamic boundary conditions, Mathematical Biosciences and Engineering, 8 (2011), 503-513.  doi: 10.3934/mbe.2011.8.503.  Google Scholar

[6]

T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math., 6 (1958), 261-322.  doi: 10.1007/BF02790238.  Google Scholar

[7]

I. Marek, Frobenius theory of positive operators: Comparison theorems and applications, Siam J Appl Math, 19 (1970), 607-628.  doi: 10.1137/0119060.  Google Scholar

[8]

M. Mokhtar-Kharroubi, On the convex compactness property for the strong operator topology and related topics, Math. Methods. Appl. Sci., 27 (2004), 687-701.  doi: 10.1002/mma.497.  Google Scholar

[9]

M. Mokhtar-Kharroubi, On Schrödinger semigroups and related topics, J. Funct. Anal, 256 (2009), 1998-2025.  doi: 10.1016/j.jfa.2008.11.012.  Google Scholar

[10]

M. Mokhtar-Kharroubi and Q. Richard, Time asymptotics of structured populations with diffusion and dynamic boundary conditions, Discrete Cont Dyn Syst, Series B, 23 (2018), 4087-4116.   Google Scholar

[11]

R. Nagel (Ed), One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, Springer, 1986.  Google Scholar

[12]

B. de. Pagter, Irreducible compact operators, Math. Z, 192 (1986), 149–153. doi: 10.1007/BF01162028.  Google Scholar

[13]

A. Rhandi, Dyson-Phillips expansion and unbounded perturbations of linear $C_{0}$-semigroups, J. Computational Appl Math, 44 (1992), 339-349.  doi: 10.1016/0377-0427(92)90005-I.  Google Scholar

[14]

G. Scluchtermann, On weakly compact operators, Math. Ann., 292 (1992), 263-266.  doi: 10.1007/BF01444620.  Google Scholar

[15]

J. Voigt, On resolvent positive operators and positive $ C_{0} $-semigroups in AL-spaces, Semigroup Forum, 38 (1989), 263-266.  doi: 10.1007/BF02573236.  Google Scholar

[16]

J. Voigt, On the convex compactness property for the strong operator topology, Note.di. Mat., 12 (1992), 259-269.   Google Scholar

[17]

L. Weis, A short proof for the stability theorem for positive semigroups on $ Lp(\mu) $, Proceedings of the Amer Math Soc, 126 (1998), 3253-3256.  doi: 10.1090/S0002-9939-98-04612-7.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[3]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[6]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[7]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[8]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[9]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[10]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[11]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[14]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[15]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[16]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[17]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[18]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[19]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[20]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (84)
  • HTML views (357)
  • Cited by (0)

Other articles
by authors

[Back to Top]