# American Institute of Mathematical Sciences

December  2020, 13(12): 3401-3415. doi: 10.3934/dcdss.2020245

## On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model

 1 The University of North Carolina at Greensboro, PO Box 26170, Greensboro, NC 27402-6170, USA 2 Auburn University at Montgomery, 7400 East Drive, Montgomery, AL 36117, USA 3 Appalachian State University, 121 Bodenheimer Drive, Boone, NC 28608, USA 4 University of Maine, 5752 Neville Hall, Room 333, Orono, ME 04469, USA

* Corresponding author: r_shivaj@uncg.edu

Received  January 2019 Published  January 2020

Fund Project: This material is based upon work supported by the National Science Foundation under Grant Nos. DMS-1516519 & DMS-1516560

We study positive solutions to a steady state reaction diffusion equation arising in population dynamics, namely,
 $\begin{equation*} \label{abs} \left\lbrace \begin{matrix}-\Delta u = \lambda u(1-u) ;\; x\in\Omega\\ \frac{\partial u}{\partial \eta}+\gamma\sqrt{\lambda}[(A-u)^2+\epsilon]u = 0; \; x\in\partial \Omega \end{matrix} \right. \end{equation*}$
where
 $\Omega$
is a bounded domain in
 $\mathbb{R}^N$
;
 $N > 1$
with smooth boundary
 $\partial \Omega$
or
 $\Omega = (0,1)$
,
 $\frac{\partial u}{\partial \eta}$
is the outward normal derivative of
 $u$
on
 $\partial \Omega$
,
 $\lambda$
is a domain scaling parameter,
 $\gamma$
is a measure of the exterior matrix (
 $\Omega^c$
) hostility, and
 $A\in (0,1)$
and
 $\epsilon>0$
are constants. The boundary condition here represents a case when the dispersal at the boundary is U-shaped. In particular, the dispersal is decreasing for
 $u and increasing for $ u>A $. We will establish non-existence, existence, multiplicity and uniqueness results. In particular, we will discuss the occurrence of an Allee effect for certain range of $ \lambda $. When $ \Omega = (0,1) $we will provide more detailed bifurcation diagrams for positive solutions and their evolution as the hostility parameter $ \gamma $varies. Our results indicate that when $ \gamma $is large there is no Allee effect for any $ \lambda $. We employ a method of sub-supersolutions to obtain existence and multiplicity results when $ N>1 $, and the quadrature method to study the case $ N = 1 $. Citation: Nalin Fonseka, Ratnasingham Shivaji, Jerome Goddard, Ⅱ, Quinn A. Morris, Byungjae Son. On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3401-3415. doi: 10.3934/dcdss.2020245 ##### References:  [1] W. C. Allee, The Social Life of Animals, W. W. Norton & Company, Inc., New York, 1938. Google Scholar [2] R. S. Cantrell and C. Cosner, Density dependent behavior at habitat boundaries and the Allee effect, Bulletin of Mathematical Biology, 69 (2007), 2339-2360. doi: 10.1007/s11538-007-9222-0. Google Scholar [3] J. T. Cronin, Movement and spatial population structure of a prairie planthopper, Ecology, 84 (2003), 1179-1188. Google Scholar [4] R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl., 424 (2015), 598-612. doi: 10.1016/j.jmaa.2014.11.012. Google Scholar [5] R. Dhanya, R. Shivaji and B. Son, A three solution theorem for a singular differential equation with nonlinear boundary conditions, Topol. Methods Nonlinear Anal., 74 (2011), 6202-6208. doi: 10.1016/j.na.2011.06.001. Google Scholar [6] J. Goddard Ⅱ, Q. Morris, C. Payne and R. Shivaji, A diffusive logistic equation with U-shaped density dependent dispersal on the boundary, Topol. Methods Nonlinear Anal., 53 (2019), 335-349. Google Scholar [7] J. Goddard Ⅱ, Q. Morris, S. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., 2018 (2018), 1-17. doi: 10.1186/s13661-018-1090-z. Google Scholar [8] J. Goddard Ⅱ, Q. Morris, R. Shivaji and B. Son, Bifurcation curves for singular and nonsingular problems with nonlinear boundary conditions, Electron. J. Differential Equations, 2018 (2018), 1-12. Google Scholar [9] J. Goddard Ⅱ and R. Shivaji, Stability analysis for positive solutions for classes of semilinear elliptic boundary-value problems with nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1019-1040. doi: 10.1017/S0308210516000408. Google Scholar [10] F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J., 31 (1982), 213-221. doi: 10.1512/iumj.1982.31.31019. Google Scholar [11] F. J. Odendaal, P. Turchin and F. R. Stermitz, Influence of host-plant density and male harassment on the distribution of female euphydryas anicia (nymphalidae), Oecologia, 78 (1989), 283-288. doi: 10.1007/BF00377167. Google Scholar [12] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Google Scholar [13] M. A. Rivas and S. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 45, 25 pp. doi: 10.1051/cocv/2018039. Google Scholar [14] A. M. Shapiro, The role of sexual behavior in density-related dispersal of pierid butterflies, The American Naturalist, 104 (1970), 367-372. doi: 10.1086/282670. Google Scholar [15] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829. doi: 10.1007/s00285-006-0373-7. Google Scholar [16] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Applied Mathematics, 109 (1987), 561-566. Google Scholar show all references ##### References:  [1] W. C. Allee, The Social Life of Animals, W. W. Norton & Company, Inc., New York, 1938. Google Scholar [2] R. S. Cantrell and C. Cosner, Density dependent behavior at habitat boundaries and the Allee effect, Bulletin of Mathematical Biology, 69 (2007), 2339-2360. doi: 10.1007/s11538-007-9222-0. Google Scholar [3] J. T. Cronin, Movement and spatial population structure of a prairie planthopper, Ecology, 84 (2003), 1179-1188. Google Scholar [4] R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl., 424 (2015), 598-612. doi: 10.1016/j.jmaa.2014.11.012. Google Scholar [5] R. Dhanya, R. Shivaji and B. Son, A three solution theorem for a singular differential equation with nonlinear boundary conditions, Topol. Methods Nonlinear Anal., 74 (2011), 6202-6208. doi: 10.1016/j.na.2011.06.001. Google Scholar [6] J. Goddard Ⅱ, Q. Morris, C. Payne and R. Shivaji, A diffusive logistic equation with U-shaped density dependent dispersal on the boundary, Topol. Methods Nonlinear Anal., 53 (2019), 335-349. Google Scholar [7] J. Goddard Ⅱ, Q. Morris, S. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., 2018 (2018), 1-17. doi: 10.1186/s13661-018-1090-z. Google Scholar [8] J. Goddard Ⅱ, Q. Morris, R. Shivaji and B. Son, Bifurcation curves for singular and nonsingular problems with nonlinear boundary conditions, Electron. J. Differential Equations, 2018 (2018), 1-12. Google Scholar [9] J. Goddard Ⅱ and R. Shivaji, Stability analysis for positive solutions for classes of semilinear elliptic boundary-value problems with nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 147 (2017), 1019-1040. doi: 10.1017/S0308210516000408. Google Scholar [10] F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J., 31 (1982), 213-221. doi: 10.1512/iumj.1982.31.31019. Google Scholar [11] F. J. Odendaal, P. Turchin and F. R. Stermitz, Influence of host-plant density and male harassment on the distribution of female euphydryas anicia (nymphalidae), Oecologia, 78 (1989), 283-288. doi: 10.1007/BF00377167. Google Scholar [12] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Google Scholar [13] M. A. Rivas and S. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 45, 25 pp. doi: 10.1051/cocv/2018039. Google Scholar [14] A. M. Shapiro, The role of sexual behavior in density-related dispersal of pierid butterflies, The American Naturalist, 104 (1970), 367-372. doi: 10.1086/282670. Google Scholar [15] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829. doi: 10.1007/s00285-006-0373-7. Google Scholar [16] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Applied Mathematics, 109 (1987), 561-566. Google Scholar Habitat$ \Omega $and the exterior matrix$ \Omega^c $An example that illustrates U-shaped density dependent dispersal ($ 1-\alpha(u) $) on the boundary Eigencurve$ B(\kappa) $and principal eigenvalue of (1.5) Bifurcation diagrams for (1.4) Shape of a positive solution Plot that illustrates the existence of$ \epsilon_{\lambda} $The graph of$ H(q) $Evolution of bifurcation diagrams for (1.8) as$ \gamma $varies when$ \epsilon = 0.1 $and$ A = 0.5 $Bifurcation diagrams for (1.8) for several values of$ \gamma $, when$ \epsilon = 0.01 $and$ A = 0.8. $Picture that illustrates that if$ \lambda < E_1(\gamma,D) $then$ \sigma_1(\lambda,\gamma,D)>0 $The plot illustrates the existence of$ \kappa_1(\lambda,\gamma,D) $ [1] Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785 [2] Wen-Bin Yang, Jianhua Wu, Hua Nie. Some uniqueness and multiplicity results for a predator-prey dynamics with a nonlinear growth rate. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1183-1204. doi: 10.3934/cpaa.2015.14.1183 [3] Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in$R_+^N$with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675 [4] Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 [5] Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar$p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729 [6] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with$ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [7] Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 [8] Gonzalo Galiano, Sergey Shmarev, Julian Velasco. Existence and multiplicity of segregated solutions to a cell-growth contact inhibition problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1479-1501. doi: 10.3934/dcds.2015.35.1479 [9] Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 [10] Michela Eleuteri. An existence result for a P.D.E. with hysteresis, convection and a nonlinear boundary condition. Conference Publications, 2007, 2007 (Special) : 344-353. doi: 10.3934/proc.2007.2007.344 [11] Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in$\mathbb{R}^2 $. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351 [12] Antonio Iannizzotto, Nikolaos S. Papageorgiou. Existence and multiplicity results for resonant fractional boundary value problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 511-532. doi: 10.3934/dcdss.2018028 [13] Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763 [14] R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497 [15] Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 [16] Li-Li Wan, Chun-Lei Tang. Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 255-271. doi: 10.3934/dcdsb.2011.15.255 [17] Monica Lazzo. Existence and multiplicity results for a class of nonlinear elliptic problems in$\mathbb(R)^N\$. Conference Publications, 2003, 2003 (Special) : 526-535. doi: 10.3934/proc.2003.2003.526 [18] Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911 [19] Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 [20] Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables