• Previous Article
    On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model
  • DCDS-S Home
  • This Issue
  • Next Article
    A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation
December  2020, 13(12): 3391-3400. doi: 10.3934/dcdss.2020246

Feynman path formula for the time fractional Schrödinger equation

Laboratoire de Mathématiques, Université de Poitiers. teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France

Received  February 2019 Revised  April 2019 Published  January 2020

In this paper, we define $ E_ \alpha(t^ \alpha A) $, where $ A $ is the generator of an uniformly bounded ($ C_0 $) semigroup and $ E_ \alpha(z) $ the Mittag-Leffler function. Since the mapping $ t\mapsto E_ \alpha(t^ \alpha A) $ has not the semigroup property, we cannot use the Trotter formula for representing the Feynman operator calculus. Thus for the Hamiltonian $ H_ \alpha = -\frac{{\hbar_ \alpha2}}{{2m}}\Delta +V(x) $, we express $ E_ \alpha(t^ \alpha H_ \alpha ) $ by subordination principle of the Feynman path integral and we retrieve the corresponding Green function.

Citation: Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246
References:
[1]

B. N. Achar, B. T. Yale and J. Hanneken, Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013), Art. ID 290216, 11 pp.  Google Scholar

[2]

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, , Einhoven University of Technology, Ph.D. Dissertation, 2001.  Google Scholar

[3]

P. Chernoff, Semigroup product formulas and addition of unbounded operators,, Bull. Amer. Math. Soc., 76 (1970), 395-398.  doi: 10.1090/S0002-9904-1970-12489-2.  Google Scholar

[4]

H. Emamirad and A. Rougirel, A functional calculus approach for rational approximation with nonuniform partitions,, Discrete Contin. Dyn. Syst., 22 (2008), 955-972.  doi: 10.3934/dcds.2008.22.955.  Google Scholar

[5]

H. Emamirad and A. Rougirel, Solution operators of three time variables for fractional linear problems, Math. Meth. Appl. Sci., 40 (2017), 1553-1572.  doi: 10.1002/mma.4079.  Google Scholar

[6]

H. Emamirad and A. Rougirel, Time fractional linear problem in $L^2(\mathbb R^d)$,, Bull. Sci. Math., 144 (2018), 1-38.  doi: 10.1016/j.bulsci.2018.01.002.  Google Scholar

[7]

H. Emamirad and A. Rougirel, Time fractional Schrödinger equation,, J. Evol. Equ., 19 (2019), 1-15.   Google Scholar

[8]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition. Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.  Google Scholar

[9]

D. Fujiwara, Rigorous Time Slicing Approach to Feynman Path Integrals, Springer Heidelberg, New York, 2017. doi: 10.1007/978-4-431-56553-6.  Google Scholar

[10]

T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer Heidelberg, New York, 2016. doi: 10.1007/978-3-319-27595-6.  Google Scholar

[11]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.  Google Scholar

[12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus,, The Clarendon Press, Oxford University Press, New York, 2000.   Google Scholar
[13]

F. MainardiY. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Frac. Calc. Appl. Anal., 4 (2001), 153-192.   Google Scholar

[14]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.  Google Scholar

[15]

J. Peng and K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635-638.  doi: 10.1016/j.jmaa.2010.04.031.  Google Scholar

[16]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

show all references

References:
[1]

B. N. Achar, B. T. Yale and J. Hanneken, Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013), Art. ID 290216, 11 pp.  Google Scholar

[2]

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, , Einhoven University of Technology, Ph.D. Dissertation, 2001.  Google Scholar

[3]

P. Chernoff, Semigroup product formulas and addition of unbounded operators,, Bull. Amer. Math. Soc., 76 (1970), 395-398.  doi: 10.1090/S0002-9904-1970-12489-2.  Google Scholar

[4]

H. Emamirad and A. Rougirel, A functional calculus approach for rational approximation with nonuniform partitions,, Discrete Contin. Dyn. Syst., 22 (2008), 955-972.  doi: 10.3934/dcds.2008.22.955.  Google Scholar

[5]

H. Emamirad and A. Rougirel, Solution operators of three time variables for fractional linear problems, Math. Meth. Appl. Sci., 40 (2017), 1553-1572.  doi: 10.1002/mma.4079.  Google Scholar

[6]

H. Emamirad and A. Rougirel, Time fractional linear problem in $L^2(\mathbb R^d)$,, Bull. Sci. Math., 144 (2018), 1-38.  doi: 10.1016/j.bulsci.2018.01.002.  Google Scholar

[7]

H. Emamirad and A. Rougirel, Time fractional Schrödinger equation,, J. Evol. Equ., 19 (2019), 1-15.   Google Scholar

[8]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition. Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.  Google Scholar

[9]

D. Fujiwara, Rigorous Time Slicing Approach to Feynman Path Integrals, Springer Heidelberg, New York, 2017. doi: 10.1007/978-4-431-56553-6.  Google Scholar

[10]

T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer Heidelberg, New York, 2016. doi: 10.1007/978-3-319-27595-6.  Google Scholar

[11]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.  Google Scholar

[12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus,, The Clarendon Press, Oxford University Press, New York, 2000.   Google Scholar
[13]

F. MainardiY. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Frac. Calc. Appl. Anal., 4 (2001), 153-192.   Google Scholar

[14]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.  Google Scholar

[15]

J. Peng and K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635-638.  doi: 10.1016/j.jmaa.2010.04.031.  Google Scholar

[16]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[3]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[6]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[7]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[10]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[11]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[12]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[15]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[16]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021002

[19]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[20]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (112)
  • HTML views (342)
  • Cited by (0)

Other articles
by authors

[Back to Top]