doi: 10.3934/dcdss.2020246

Feynman path formula for the time fractional Schrödinger equation

Laboratoire de Mathématiques, Université de Poitiers. teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France

Received  February 2019 Revised  April 2019 Published  January 2020

In this paper, we define $ E_ \alpha(t^ \alpha A) $, where $ A $ is the generator of an uniformly bounded ($ C_0 $) semigroup and $ E_ \alpha(z) $ the Mittag-Leffler function. Since the mapping $ t\mapsto E_ \alpha(t^ \alpha A) $ has not the semigroup property, we cannot use the Trotter formula for representing the Feynman operator calculus. Thus for the Hamiltonian $ H_ \alpha = -\frac{{\hbar_ \alpha2}}{{2m}}\Delta +V(x) $, we express $ E_ \alpha(t^ \alpha H_ \alpha ) $ by subordination principle of the Feynman path integral and we retrieve the corresponding Green function.

Citation: Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020246
References:
[1]

B. N. Achar, B. T. Yale and J. Hanneken, Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013), Art. ID 290216, 11 pp.  Google Scholar

[2]

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, , Einhoven University of Technology, Ph.D. Dissertation, 2001.  Google Scholar

[3]

P. Chernoff, Semigroup product formulas and addition of unbounded operators,, Bull. Amer. Math. Soc., 76 (1970), 395-398.  doi: 10.1090/S0002-9904-1970-12489-2.  Google Scholar

[4]

H. Emamirad and A. Rougirel, A functional calculus approach for rational approximation with nonuniform partitions,, Discrete Contin. Dyn. Syst., 22 (2008), 955-972.  doi: 10.3934/dcds.2008.22.955.  Google Scholar

[5]

H. Emamirad and A. Rougirel, Solution operators of three time variables for fractional linear problems, Math. Meth. Appl. Sci., 40 (2017), 1553-1572.  doi: 10.1002/mma.4079.  Google Scholar

[6]

H. Emamirad and A. Rougirel, Time fractional linear problem in $L^2(\mathbb R^d)$,, Bull. Sci. Math., 144 (2018), 1-38.  doi: 10.1016/j.bulsci.2018.01.002.  Google Scholar

[7]

H. Emamirad and A. Rougirel, Time fractional Schrödinger equation,, J. Evol. Equ., 19 (2019), 1-15.   Google Scholar

[8]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition. Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.  Google Scholar

[9]

D. Fujiwara, Rigorous Time Slicing Approach to Feynman Path Integrals, Springer Heidelberg, New York, 2017. doi: 10.1007/978-4-431-56553-6.  Google Scholar

[10]

T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer Heidelberg, New York, 2016. doi: 10.1007/978-3-319-27595-6.  Google Scholar

[11]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.  Google Scholar

[12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus,, The Clarendon Press, Oxford University Press, New York, 2000.   Google Scholar
[13]

F. MainardiY. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Frac. Calc. Appl. Anal., 4 (2001), 153-192.   Google Scholar

[14]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.  Google Scholar

[15]

J. Peng and K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635-638.  doi: 10.1016/j.jmaa.2010.04.031.  Google Scholar

[16]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

show all references

References:
[1]

B. N. Achar, B. T. Yale and J. Hanneken, Time fractional Schrodinger equation revisited, Adv. Math. Phys., 2013 (2013), Art. ID 290216, 11 pp.  Google Scholar

[2]

E. Bajlekova, Fractional Evolution Equations in Banach Spaces, , Einhoven University of Technology, Ph.D. Dissertation, 2001.  Google Scholar

[3]

P. Chernoff, Semigroup product formulas and addition of unbounded operators,, Bull. Amer. Math. Soc., 76 (1970), 395-398.  doi: 10.1090/S0002-9904-1970-12489-2.  Google Scholar

[4]

H. Emamirad and A. Rougirel, A functional calculus approach for rational approximation with nonuniform partitions,, Discrete Contin. Dyn. Syst., 22 (2008), 955-972.  doi: 10.3934/dcds.2008.22.955.  Google Scholar

[5]

H. Emamirad and A. Rougirel, Solution operators of three time variables for fractional linear problems, Math. Meth. Appl. Sci., 40 (2017), 1553-1572.  doi: 10.1002/mma.4079.  Google Scholar

[6]

H. Emamirad and A. Rougirel, Time fractional linear problem in $L^2(\mathbb R^d)$,, Bull. Sci. Math., 144 (2018), 1-38.  doi: 10.1016/j.bulsci.2018.01.002.  Google Scholar

[7]

H. Emamirad and A. Rougirel, Time fractional Schrödinger equation,, J. Evol. Equ., 19 (2019), 1-15.   Google Scholar

[8]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition. Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010.  Google Scholar

[9]

D. Fujiwara, Rigorous Time Slicing Approach to Feynman Path Integrals, Springer Heidelberg, New York, 2017. doi: 10.1007/978-4-431-56553-6.  Google Scholar

[10]

T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus, Springer Heidelberg, New York, 2016. doi: 10.1007/978-3-319-27595-6.  Google Scholar

[11]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, 1985.  Google Scholar

[12] G. W. Johnson and M. L. Lapidus, The Feynman Integral and Feynman's Operational Calculus,, The Clarendon Press, Oxford University Press, New York, 2000.   Google Scholar
[13]

F. MainardiY. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation,, Frac. Calc. Appl. Anal., 4 (2001), 153-192.   Google Scholar

[14]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339-3352.  doi: 10.1063/1.1769611.  Google Scholar

[15]

J. Peng and K. Li, A note on property of the Mittag-Leffler function, J. Math. Anal. Appl., 370 (2010), 635-638.  doi: 10.1016/j.jmaa.2010.04.031.  Google Scholar

[16]

J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Boston, Berlin, 1993. doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[1]

Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029

[2]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033

[3]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050

[4]

Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267

[5]

Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020171

[6]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058

[7]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[8]

Berat Karaagac, Kolade M. Owolabi. Numerical analysis of polio model: A new approach to epidemiological model using derivative with Mittag-Leffler Kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020278

[9]

Giovanni Colombo, Khai T. Nguyen. On the minimum time function around the origin. Mathematical Control & Related Fields, 2013, 3 (1) : 51-82. doi: 10.3934/mcrf.2013.3.51

[10]

Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007

[11]

Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967

[12]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[13]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[14]

Carlo Sinestrari. Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure & Applied Analysis, 2004, 3 (4) : 757-774. doi: 10.3934/cpaa.2004.3.757

[15]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[16]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[17]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[18]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[19]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020139

[20]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

2018 Impact Factor: 0.545

Article outline

[Back to Top]