Suppose that $ u(x) $ is a positive subsolution to an elliptic equation in a bounded domain $ D $, with the $ C^2 $ smooth boundary $ \partial D $. We prove a quantitative version of the Hopf maximum principle that can be formulated as follows: there exists a constant $ \gamma>0 $ such that $ \partial_{\bf n}u(\tilde x) $ – the outward normal derivative at the maximum point $ \tilde x\in \partial D $ (necessary located at $ \partial D $, by the strong maximum principle) – satisfies $ \partial_{\bf n}u(\tilde x)>\gamma u(\tilde x) $, provided the coefficient $ c(x) $ by the zero order term satisfies $ \sup_{x\in D}c(x) = -c_*<0 $. The constant $ \gamma $ depends only on the geometry of $ D $, uniform ellipticity bound, $ L^\infty $ bounds on the coefficients, and $ c_* $. The key tool used is the Feynman–Kac representation of a subsolution to the elliptic equation.
Citation: |
[1] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105.![]() ![]() ![]() |
[2] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.
![]() ![]() |
[3] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, , Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0949-2.![]() ![]() ![]() |
[4] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.
![]() ![]() |
[5] |
D. H. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.
![]() ![]() |