December  2020, 13(12): 3495-3502. doi: 10.3934/dcdss.2020248

A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656, Warszawa, Poland

2. 

Lublin University of Technology, Nadbystrzycka 38A, 20–618 Lublin, Poland

* Corresponding author: Adam Bobrowski

Dedicated to Gisèle Ruiz Goldstein

Received  September 2019 Published  January 2020

Fund Project: T.K. acknowledges the support of the National Science Centre: NCN grant 2016/23/B/ST1/00492.

Suppose that $ u(x) $ is a positive subsolution to an elliptic equation in a bounded domain $ D $, with the $ C^2 $ smooth boundary $ \partial D $. We prove a quantitative version of the Hopf maximum principle that can be formulated as follows: there exists a constant $ \gamma>0 $ such that $ \partial_{\bf n}u(\tilde x) $ – the outward normal derivative at the maximum point $ \tilde x\in \partial D $ (necessary located at $ \partial D $, by the strong maximum principle) – satisfies $ \partial_{\bf n}u(\tilde x)>\gamma u(\tilde x) $, provided the coefficient $ c(x) $ by the zero order term satisfies $ \sup_{x\in D}c(x) = -c_*<0 $. The constant $ \gamma $ depends only on the geometry of $ D $, uniform ellipticity bound, $ L^\infty $ bounds on the coefficients, and $ c_* $. The key tool used is the Feynman–Kac representation of a subsolution to the elliptic equation.

Citation: Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248
References:
[1]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.  Google Scholar

[3]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, , Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[4]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.  Google Scholar

[5]

D. H. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.  Google Scholar

show all references

References:
[1]

H. BerestyckiL. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.  doi: 10.1002/cpa.3160470105.  Google Scholar

[2]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001.  Google Scholar

[3]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, , Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.  Google Scholar

[4]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.  Google Scholar

[5]

D. H. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, 233. Springer-Verlag, Berlin-New York, 1979.  Google Scholar

Figure 1.  The solid curve $ \partial D $ separates $ D $ (below) from its complement $ D^\complement $ (above). The set $ \partial K( x,r/2)\cap K( y,r) $ forms an arc on which the centers of the small dotted circles, representing $ \partial K(z,\delta) $, lie.
[1]

Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024

[2]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[3]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[4]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[5]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[6]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[7]

Nadia Lekrine, Chao-Jiang Xu. Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation. Kinetic & Related Models, 2009, 2 (4) : 647-666. doi: 10.3934/krm.2009.2.647

[8]

Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246

[9]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[10]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[11]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[12]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[13]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[14]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[15]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[16]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[17]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[18]

Aleksander Ćwiszewski, Wojciech Kryszewski. On a generalized Poincaré-Hopf formula in infinite dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 953-978. doi: 10.3934/dcds.2011.29.953

[19]

Federica Dragoni. Metric Hopf-Lax formula with semicontinuous data. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 713-729. doi: 10.3934/dcds.2007.17.713

[20]

Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (70)
  • HTML views (293)
  • Cited by (0)

Other articles
by authors

[Back to Top]