doi: 10.3934/dcdss.2020252

Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations

1. 

Department of Physics, Faculty of Science, The University of Maroua, Maroua, 814, Cameroon

2. 

Laboratory of Mechanics, Materials and Structures, Doctoral research unit in Physics and Applications, University of Yaounde I, Yaounde, 812, Cameroon

* Corresponding author: Guy Joseph Eyebe

Received  April 2019 Revised  June 2019 Published  January 2020

In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that the distance between chaotic region and non-chaotic region in this kind of structure depends strongly on the fractional order parameter.

Citation: Guy Joseph Eyebe, Betchewe Gambo, Alidou Mohamadou, Timoleon Crepin Kofane. Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020252
References:
[1]

J. D. Achenbach and C. Sun, Moving load on a flexibly supported timochenko beam, Int. J. Solids Struct., 1 (1965), 353-370.   Google Scholar

[2]

L. M. Anague TabejieuB. R. Nana Nbendjo and P. Woafo, On the dynamics of rayleigh beams resting on fractional-order viscoelastic pasternak foundations subjected to moving loads, Chaos Solitons Fract., 93 (2016), 39-47.  doi: 10.1016/j.chaos.2016.10.001.  Google Scholar

[3]

A. A. Andronov and A. Witt, Towards mathematical theory of capture, Archiv. fur Electrotechnik, 24 (1930), 99-110.   Google Scholar

[4]

H. AskariH. Jamchidifar and B. Fidan, High resolution mass identification using nonlinear vibrations of nanoplates, Measurement, 101 (2017), 166-174.  doi: 10.1016/j.measurement.2017.01.012.  Google Scholar

[5]

M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 43 (2012), 34-40.  doi: 10.1016/j.mechrescom.2012.02.001.  Google Scholar

[6]

M. Aydogdu and M. Arda, Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity, Int. J. Mech. Mater. Des., 12 (2016), 71-84.  doi: 10.1007/s10999-014-9292-8.  Google Scholar

[7]

B. E. DemartiniH. E. ButterfieldJ. Moehlis and K. L. Turner, Chaos in microelectromechanical oscillator governed by the nonlinear Mathieu equation, J. Microelec. Syst., 16 (2007), 1314-1323.  doi: 10.1109/JMEMS.2007.906757.  Google Scholar

[8]

H. DingQ. L. Chen and S. P. Yang, Convergence of garlekin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J. Sound Vib., 331 (2012), 2426-2442.   Google Scholar

[9]

A. C. Eringen, On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710.  doi: 10.1063/1.332803.  Google Scholar

[10]

A. C. Eringen, Nonlocal Continuum Fields Theories, Springer, USA, 2002.  Google Scholar

[11]

E. GhavanlooF. Daneshmand and M. Rafiei, Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, Physica E, 42 (2010), 2218-2224.   Google Scholar

[12]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Verlag, USA, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[13]

Y. Haitao and Y. Yuan, Analytical solution for an infinite euler-bernoulli beam on a visco-elastic foundation subjected to arbitrary dynamic loads, J. Eng. Mech., 140 (2014), 542-551.   Google Scholar

[14]

Z. Hryniewicz, Dynamics of rayleigh beam on nonlinear foundation due to moving load using adomian decomposition and coiflet expansion, Soil Dyn. Earthq. Eng., 31 (2011), 1123-1131.  doi: 10.1016/j.soildyn.2011.03.013.  Google Scholar

[15]

B. KaramiM. Janghorban and L. Li, On guided wave propagation in fully clamped porous functionally graded nanoplates, Acta Astronaut, 143 (2018), 380-390.  doi: 10.1016/j.actaastro.2017.12.011.  Google Scholar

[16]

M. H. KargonovinD. YounesianD. J. Thompson and C. J. C. Jones, Response of beams on the nonlinear viscoelastic foundations to harmonic moving loads, Comput. Struct., 83 (2005), 1865-1877.   Google Scholar

[17]

M. A. Kazemi-LariS. A. Fazelzadeh and E. Ghavanloo, Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation, Physica E, 44 (2012), 1623-1630.  doi: 10.1016/j.physe.2012.04.007.  Google Scholar

[18]

K. Kiani, meshless approach for free transverse vibration of embedded single walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci., 52 (2010), 1343-1356.  doi: 10.1016/j.ijmecsci.2010.06.010.  Google Scholar

[19]

K. Kiani, Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subject to axial load using nonlocal shear deformable beam theories, Int. J. Mech. Sci., 68 (2013), 16-34.   Google Scholar

[20]

K. Kiani, Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles, Nonlinear Dyn., 76 (2014), 1885-1903.  doi: 10.1007/s11071-014-1255-y.  Google Scholar

[21]

H. L. Lee and W. J. Chang, Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E, 41 (2009), 529-532.  doi: 10.1016/j.physe.2008.10.002.  Google Scholar

[22]

P. M. Mathews, Vibrations of a beam on elastic foundation, J. Appl. Math. Mech., 38 (1958), 105-115.  doi: 10.1002/zamm.19580380305.  Google Scholar

[23]

I. MehdipourA. BarariA. Kimiaeifar and G. Domairry, Vibrational analysis of curved single-walled carbon nanotube on a pasternak elastic foundation, Adv. Eng. Softw., 48 (2012), 1-5.  doi: 10.1016/j.advengsoft.2012.01.004.  Google Scholar

[24]

V. K. Melnikov, On the stability of the center of some periodic pertubation, Trans. Moscow Math. Soc., 12 (1963), 1-57.   Google Scholar

[25]

G. Mikhasev, On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium., Z Angew Math. Mech., 94 (2014), 130-141.  doi: 10.1002/zamm.201200140.  Google Scholar

[26]

M. Mir and M. Tahani, Chaotic behavior of nonlocal nanobeam resting on a nonlinear viscoelastic foundation subjected to harmonic excitation, Modares Mech. Eng., 18 (2018), 264-272.   Google Scholar

[27]

T. Murmu and S. C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41 (2009), 1232-1239.  doi: 10.1016/j.physe.2009.02.004.  Google Scholar

[28]

K. B. Mustapha and Z. W. Zhong, Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two parameter elastic medium, Comput. Mater. Sci., 50 (2010), 742-751.  doi: 10.1016/j.commatsci.2010.10.005.  Google Scholar

[29]

A. H. Nayfeh, Introduction to Pertubation Techniques,, John Wiley, New York, 1981.  Google Scholar

[30]

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley, New York, 1979.  Google Scholar

[31]

B. R. Nana Nbendjo and P. Woafo, Active control with delay of horseshoes chaos using piezoelectric absorber buckled beam under parametric excitation, Chaos Solitons Fract, 32 (2007), 73-79.  doi: 10.1016/j.chaos.2005.10.070.  Google Scholar

[32]

B. R. Nana Nbendjo and P. Woafo, Modelling of the dynamics of Euler's beam by $ \phi^5 $ potential, Mech. Res. Commun., 38 (2011), 542-545.   Google Scholar

[33]

H. Niknam and M. M. Aghdam, A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation, Compos. Struct., 119 (2015), 452-462.  doi: 10.1016/j.compstruct.2014.09.023.  Google Scholar

[34]

I. Petras, Fractional nonlinear systems: Modeling, analysis and simulation, Higher Education Press , Beijing, 2011. Google Scholar

[35]

S. C. Pradhan and G. K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50 (2011), 1052-1056.  doi: 10.1016/j.commatsci.2010.11.001.  Google Scholar

[36]

M. RafieiS. R. Mohebpour and F. Daneshmand, Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium, Physica E, 44 (2012), 1372-1379.  doi: 10.1016/j.physe.2012.02.021.  Google Scholar

[37]

G. Romano and R. Barreta, Nonlocal elasticity in nanobeams: The stress-driven integral model, Int. J. Eng. Sci., 115 (2017), 14-27.  doi: 10.1016/j.ijengsci.2017.03.002.  Google Scholar

[38]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems,, Springer Science and Business, New York, 2007.  Google Scholar

[39]

E. J. Sapountzakis and A. Kampitsis, Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads, J. Sound Vib., 330 (2011), 5410-5426.  doi: 10.1016/j.jsv.2011.06.009.  Google Scholar

[40]

Y. ShenH. Y. Sing and H. Ma, Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int. J. Non-linear Mech., 47 (2012), 975-983.   Google Scholar

[41]

M. S. Siewe and U. H. Hegazy, Homoclinic bifurcation and chaos control in MEMS resonators, Appl. Math. Model., 35 (2011), 5533–5552. doi: 10.1016/j.apm.2011.05.021.  Google Scholar

[42]

N. Togun and S. M. Bagdatli, Nonlinear vibration of a nanobeam on pasternak elastic foundation based on nonlocal euler-bernoulli beam theory, Math. Comput. Appl., 21 (2016), 1-19.  doi: 10.3390/mca21010003.  Google Scholar

[43]

B. L. Wang and K. F. Wang, Vibration analysis of embedded nanotubes using nonlocal continuum theory, Composites Part B Eng., 47 (2013), 96-101.  doi: 10.1016/j.compositesb.2012.10.043.  Google Scholar

[44]

M. H. Yas and N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press Vessels Piping, 98 (2012), 119-128.  doi: 10.1016/j.ijpvp.2012.07.012.  Google Scholar

[45]

X. Zhang and L. Zhou, Melnikovs method for chaos of the nanoplate postulating nonlinear foundation, Appl. Math. Model., 61 (2018), 744-749.  doi: 10.1016/j.apm.2018.05.003.  Google Scholar

show all references

References:
[1]

J. D. Achenbach and C. Sun, Moving load on a flexibly supported timochenko beam, Int. J. Solids Struct., 1 (1965), 353-370.   Google Scholar

[2]

L. M. Anague TabejieuB. R. Nana Nbendjo and P. Woafo, On the dynamics of rayleigh beams resting on fractional-order viscoelastic pasternak foundations subjected to moving loads, Chaos Solitons Fract., 93 (2016), 39-47.  doi: 10.1016/j.chaos.2016.10.001.  Google Scholar

[3]

A. A. Andronov and A. Witt, Towards mathematical theory of capture, Archiv. fur Electrotechnik, 24 (1930), 99-110.   Google Scholar

[4]

H. AskariH. Jamchidifar and B. Fidan, High resolution mass identification using nonlinear vibrations of nanoplates, Measurement, 101 (2017), 166-174.  doi: 10.1016/j.measurement.2017.01.012.  Google Scholar

[5]

M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity, Mech. Res. Commun., 43 (2012), 34-40.  doi: 10.1016/j.mechrescom.2012.02.001.  Google Scholar

[6]

M. Aydogdu and M. Arda, Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity, Int. J. Mech. Mater. Des., 12 (2016), 71-84.  doi: 10.1007/s10999-014-9292-8.  Google Scholar

[7]

B. E. DemartiniH. E. ButterfieldJ. Moehlis and K. L. Turner, Chaos in microelectromechanical oscillator governed by the nonlinear Mathieu equation, J. Microelec. Syst., 16 (2007), 1314-1323.  doi: 10.1109/JMEMS.2007.906757.  Google Scholar

[8]

H. DingQ. L. Chen and S. P. Yang, Convergence of garlekin truncation for dynamic response of finite beams on nonlinear foundations under a moving load, J. Sound Vib., 331 (2012), 2426-2442.   Google Scholar

[9]

A. C. Eringen, On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves, J. Appl. Phys., 54 (1983), 4703-4710.  doi: 10.1063/1.332803.  Google Scholar

[10]

A. C. Eringen, Nonlocal Continuum Fields Theories, Springer, USA, 2002.  Google Scholar

[11]

E. GhavanlooF. Daneshmand and M. Rafiei, Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation, Physica E, 42 (2010), 2218-2224.   Google Scholar

[12]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer-Verlag, USA, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[13]

Y. Haitao and Y. Yuan, Analytical solution for an infinite euler-bernoulli beam on a visco-elastic foundation subjected to arbitrary dynamic loads, J. Eng. Mech., 140 (2014), 542-551.   Google Scholar

[14]

Z. Hryniewicz, Dynamics of rayleigh beam on nonlinear foundation due to moving load using adomian decomposition and coiflet expansion, Soil Dyn. Earthq. Eng., 31 (2011), 1123-1131.  doi: 10.1016/j.soildyn.2011.03.013.  Google Scholar

[15]

B. KaramiM. Janghorban and L. Li, On guided wave propagation in fully clamped porous functionally graded nanoplates, Acta Astronaut, 143 (2018), 380-390.  doi: 10.1016/j.actaastro.2017.12.011.  Google Scholar

[16]

M. H. KargonovinD. YounesianD. J. Thompson and C. J. C. Jones, Response of beams on the nonlinear viscoelastic foundations to harmonic moving loads, Comput. Struct., 83 (2005), 1865-1877.   Google Scholar

[17]

M. A. Kazemi-LariS. A. Fazelzadeh and E. Ghavanloo, Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation, Physica E, 44 (2012), 1623-1630.  doi: 10.1016/j.physe.2012.04.007.  Google Scholar

[18]

K. Kiani, meshless approach for free transverse vibration of embedded single walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, Int. J. Mech. Sci., 52 (2010), 1343-1356.  doi: 10.1016/j.ijmecsci.2010.06.010.  Google Scholar

[19]

K. Kiani, Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subject to axial load using nonlocal shear deformable beam theories, Int. J. Mech. Sci., 68 (2013), 16-34.   Google Scholar

[20]

K. Kiani, Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles, Nonlinear Dyn., 76 (2014), 1885-1903.  doi: 10.1007/s11071-014-1255-y.  Google Scholar

[21]

H. L. Lee and W. J. Chang, Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E, 41 (2009), 529-532.  doi: 10.1016/j.physe.2008.10.002.  Google Scholar

[22]

P. M. Mathews, Vibrations of a beam on elastic foundation, J. Appl. Math. Mech., 38 (1958), 105-115.  doi: 10.1002/zamm.19580380305.  Google Scholar

[23]

I. MehdipourA. BarariA. Kimiaeifar and G. Domairry, Vibrational analysis of curved single-walled carbon nanotube on a pasternak elastic foundation, Adv. Eng. Softw., 48 (2012), 1-5.  doi: 10.1016/j.advengsoft.2012.01.004.  Google Scholar

[24]

V. K. Melnikov, On the stability of the center of some periodic pertubation, Trans. Moscow Math. Soc., 12 (1963), 1-57.   Google Scholar

[25]

G. Mikhasev, On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium., Z Angew Math. Mech., 94 (2014), 130-141.  doi: 10.1002/zamm.201200140.  Google Scholar

[26]

M. Mir and M. Tahani, Chaotic behavior of nonlocal nanobeam resting on a nonlinear viscoelastic foundation subjected to harmonic excitation, Modares Mech. Eng., 18 (2018), 264-272.   Google Scholar

[27]

T. Murmu and S. C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E, 41 (2009), 1232-1239.  doi: 10.1016/j.physe.2009.02.004.  Google Scholar

[28]

K. B. Mustapha and Z. W. Zhong, Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two parameter elastic medium, Comput. Mater. Sci., 50 (2010), 742-751.  doi: 10.1016/j.commatsci.2010.10.005.  Google Scholar

[29]

A. H. Nayfeh, Introduction to Pertubation Techniques,, John Wiley, New York, 1981.  Google Scholar

[30]

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley, New York, 1979.  Google Scholar

[31]

B. R. Nana Nbendjo and P. Woafo, Active control with delay of horseshoes chaos using piezoelectric absorber buckled beam under parametric excitation, Chaos Solitons Fract, 32 (2007), 73-79.  doi: 10.1016/j.chaos.2005.10.070.  Google Scholar

[32]

B. R. Nana Nbendjo and P. Woafo, Modelling of the dynamics of Euler's beam by $ \phi^5 $ potential, Mech. Res. Commun., 38 (2011), 542-545.   Google Scholar

[33]

H. Niknam and M. M. Aghdam, A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation, Compos. Struct., 119 (2015), 452-462.  doi: 10.1016/j.compstruct.2014.09.023.  Google Scholar

[34]

I. Petras, Fractional nonlinear systems: Modeling, analysis and simulation, Higher Education Press , Beijing, 2011. Google Scholar

[35]

S. C. Pradhan and G. K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM, Comput. Mater. Sci., 50 (2011), 1052-1056.  doi: 10.1016/j.commatsci.2010.11.001.  Google Scholar

[36]

M. RafieiS. R. Mohebpour and F. Daneshmand, Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium, Physica E, 44 (2012), 1372-1379.  doi: 10.1016/j.physe.2012.02.021.  Google Scholar

[37]

G. Romano and R. Barreta, Nonlocal elasticity in nanobeams: The stress-driven integral model, Int. J. Eng. Sci., 115 (2017), 14-27.  doi: 10.1016/j.ijengsci.2017.03.002.  Google Scholar

[38]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems,, Springer Science and Business, New York, 2007.  Google Scholar

[39]

E. J. Sapountzakis and A. Kampitsis, Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads, J. Sound Vib., 330 (2011), 5410-5426.  doi: 10.1016/j.jsv.2011.06.009.  Google Scholar

[40]

Y. ShenH. Y. Sing and H. Ma, Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int. J. Non-linear Mech., 47 (2012), 975-983.   Google Scholar

[41]

M. S. Siewe and U. H. Hegazy, Homoclinic bifurcation and chaos control in MEMS resonators, Appl. Math. Model., 35 (2011), 5533–5552. doi: 10.1016/j.apm.2011.05.021.  Google Scholar

[42]

N. Togun and S. M. Bagdatli, Nonlinear vibration of a nanobeam on pasternak elastic foundation based on nonlocal euler-bernoulli beam theory, Math. Comput. Appl., 21 (2016), 1-19.  doi: 10.3390/mca21010003.  Google Scholar

[43]

B. L. Wang and K. F. Wang, Vibration analysis of embedded nanotubes using nonlocal continuum theory, Composites Part B Eng., 47 (2013), 96-101.  doi: 10.1016/j.compositesb.2012.10.043.  Google Scholar

[44]

M. H. Yas and N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press Vessels Piping, 98 (2012), 119-128.  doi: 10.1016/j.ijpvp.2012.07.012.  Google Scholar

[45]

X. Zhang and L. Zhou, Melnikovs method for chaos of the nanoplate postulating nonlinear foundation, Appl. Math. Model., 61 (2018), 744-749.  doi: 10.1016/j.apm.2018.05.003.  Google Scholar

Figure 1.  Boundary conditions for different beam supports. (a) Simple-simple case and (b) clamped-clamped case.
Figure 2.  First three vibration mode shapes for the simple-simple case boundary condition.
Figure 3.  First three vibration modes shapes for the clamped-clamped case boundary condition.
Figure 4.  Criticals curves separting the chaotic and non-chaotic regions.
Figure 5.  Criticals surfaces separating the chaotic and non-chaotic regions.
Figure 6.  Critical curve separating the chaotic and non-chaotic regions.
Figure 7.  Regular motion when $ f = 80 $: (a) the phase portrait (b) the Poincare section for the initial conditions $ (q_0,p_0) = (0.1,0.1) $.
Figure 8.  Regular motion when $ f = 80 $: (c) the waveform $ (t, q(t)) $ (d)the waveform $ (t, p(t)) $ for the initial conditions $ (q_0,p_0) = (0.1,0.1) $.
Figure 9.  Chaotic motion when $ f = 400 $: (a) the phase portrait (b) the Poincare section for the initial conditions $ (q_0,p_0) = (0.1,0.1) $.
Figure 10.  Chaotic motion when $ f = 400 $: (c) the waveform $ (t, q(t)) $ (d)the waveform $ (t, p(t)) $ for the initial conditions $ (q_0,p_0) = (0.1,0.1) $.
[1]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[2]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems & Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[3]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[4]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

[5]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[6]

Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems & Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053

[7]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[8]

Kolade M. Owolabi. Dynamical behaviour of fractional-order predator-prey system of Holling-type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 823-834. doi: 10.3934/dcdss.2020047

[9]

Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137

[10]

Karthikeyan Rajagopal, Serdar Cicek, Akif Akgul, Sajad Jafari, Anitha Karthikeyan. Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1001-1013. doi: 10.3934/dcdsb.2019205

[11]

Nasser Sweilam, Fathalla Rihan, Seham AL-Mekhlafi. A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2403-2424. doi: 10.3934/dcdss.2020120

[12]

Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995

[13]

Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020397

[14]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[15]

Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493

[16]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 957-974. doi: 10.3934/dcdss.2020056

[17]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[18]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[19]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[20]

Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]