doi: 10.3934/dcdss.2020254

Path prediction model of county urban growth boundary based on BP neural network

1. 

School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China

2. 

School of Public Administration, Shaanxi Radio and Television University, Xi'an 710068, China

* Corresponding author: Huiqin Wang

Received  April 2019 Revised  May 2019 Published  January 2020

The city is the center of the regional system and the most influential space-time composite system. The spatial expansion of its land has become one of the main features of land use change in China. The problem of marginal growth of county cities is studied in depth in this paper. Firstly, the county urban land use information extraction method based on probabilistic neural network is used to obtain the geographic data of the county city. Then, through the optimized multi-feature fusion acquisition algorithm, the collected geographic data features of county cities are multi-featured. Finally, based on the characteristics of county city geographic data, the BP neural network-based path prediction model of the county urban growth boundary is established to predict the path of county urban growth boundary. The analysis shows that when the random variable is 1.1 and the threshold is 0.7, the prediction accuracy of this model is 99$ \% $, which can effectively predict the growth boundary path of county cities. Compared with the similar prediction model, the prediction accuracy of this model is 99.87$ \% $, which makes more accurate prediction of the future development of the city and can provide the basis for urban planning.

Citation: Zhiyuan Sun, Huiqin Wang, Ke Wang, Aorui Bi. Path prediction model of county urban growth boundary based on BP neural network. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020254
References:
[1]

C. BradleyN. Joyce and L. Garcia-Larrea, Adaptation in human somatosensory cortex as a model of sensory memory construction: A study using high-density eeg, Brain Structure and Function, 221 (2016), 421-431.  doi: 10.1007/s00429-014-0915-5.  Google Scholar

[2]

Y. Chen, Prediction algorithm of pm2.5 mass concentration based on adaptive bp neural network, Computing, 100 (2018), 825-838.  doi: 10.1007/s00607-018-0628-3.  Google Scholar

[3]

M. ColomboD. Cumming and S. Vismara, Governmental venture capital for innovative young firms, Journal of Technology Transfer, 41 (2016), 10-24.   Google Scholar

[4]

T. CongJ. Hong and O. Dong, Ntb branch predictor: Dynamic branch predictor for high-performance embedded processors, Journal of Supercomputing, 72 (2016), 1679-1693.   Google Scholar

[5]

M. DiM. Mottolese and B. Di, The cytoskeleton regulatory protein hmena (enah) is overexpressed in human benign breast lesions with high risk of transformation and human epidermal growth factor receptor-2-positive/hormonal receptor-negative tumors, Clinical Cancer Research, 12 (2016), 1470-1478.   Google Scholar

[6]

M. Dorado-MorenoA. Sianes and C. Hervás-Martínez, From outside to hyper-globalisation: An artificial neural network ordinal classifier applied to measure the extent of globalization, Quality and Quantity, 50 (2016), 549-576.  doi: 10.1007/s11135-015-0163-7.  Google Scholar

[7]

G. FranaM. Almeida and S. Bonnet, Nowcasting model of low wind profile based on neural network using sodar data at guarulhos airport, brazil, International Journal of Remote Sensing, 39 (2018), 2506-2517.   Google Scholar

[8]

X. FuF. Wang and J. Shang, Optimized bp neural network algorithm based on multi-child genetic algorithm, Computer Simulation, 33 (2016), 258-263.   Google Scholar

[9]

J. GaoX. Wu and W. Gao, Review on inductive contactless power transfer technology, Journal of Power Supply, 15 (2017), 166-178.   Google Scholar

[10]

M. GuerreroD. Urbano and A. Fayolle, Entrepreneurial activity and regional competitiveness: Evidence from european entrepreneurial universities, Journal of Technology Transfer, 41 (2016), 105-131.  doi: 10.1007/s10961-014-9377-4.  Google Scholar

[11]

E. Jenelius and H. Koutsopoulos, Urban network travel time prediction based on a probabilistic principal component analysis model of probe data, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 436-445.  doi: 10.1109/TITS.2017.2703652.  Google Scholar

[12]

M. Joshanloo and W. Dan, Religiosity reduces the negative influence of injustice on subjective well-being: a study in 121 nations, Applied Research in Quality of Life, 11 (2016), 601-612.  doi: 10.1007/s11482-014-9384-5.  Google Scholar

[13]

S. KimK. Um and H. Kim, Hospital career management systems and their effects on the psychological state and career attitudes of nurses, Service Business, 10 (2016), 87-112.  doi: 10.1007/s11628-014-0257-7.  Google Scholar

[14]

W. Peng and Q. Huang, Research on complex information system evolution process, Journal of China Academy of Electronics and Information Technology, 12 (2017), 37-42.   Google Scholar

[15]

B. Song, Study on construction technology and engineering management of water conservancy and hydropower projects, Automation and Instrumentation, 10 (2017), 170-171.   Google Scholar

[16]

I. SzcsB. Schlegelmilch and T. Rusch, Linking cause assessment, corporate philanthropy, and corporate reputation, Journal of the Academy of Marketing Science, 44 (2016), 376-396.  doi: 10.1007/s11747-014-0417-2.  Google Scholar

[17]

J. Tremblay and I. Abi-Zeid, Value-based argumentation for policy decision analysis: Methodology and an exploratory case study of a hydroelectric project in québec, Annals of Operations Research, 236 (2016), 233-253.  doi: 10.1007/s10479-014-1774-4.  Google Scholar

[18]

H. UzunZ. Yldz and J. Goldfarb, Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis, Bioresource Technology, 234 (2017), 122-130.  doi: 10.1016/j.biortech.2017.03.015.  Google Scholar

[19]

H. Wang and X. Zhang, Game theoretical transportation network design among multiple regions, Annals of Operations Research, 249 (2017), 97-117.  doi: 10.1007/s10479-014-1700-9.  Google Scholar

[20]

Y. WangS. Hu and F. Cao, Research prospect of cathode materials for lithium ion battery, Chinese Journal of Power Sources, 41 (2017), 638-640.   Google Scholar

[21]

S. XuZ. He and R. Long, Impacts of economic growth and urbanization on co2 emissions: Regional differences in china based on panel estimation, Regional Environmental Change, 16 (2016), 777-787.  doi: 10.1007/s10113-015-0795-0.  Google Scholar

[22]

J. Zhou and X. Hu, Knowledge sharing and life satisfaction: The roles of colleague relationships and gender, Social Indicators Research, 126 (2016), 379-394.   Google Scholar

show all references

References:
[1]

C. BradleyN. Joyce and L. Garcia-Larrea, Adaptation in human somatosensory cortex as a model of sensory memory construction: A study using high-density eeg, Brain Structure and Function, 221 (2016), 421-431.  doi: 10.1007/s00429-014-0915-5.  Google Scholar

[2]

Y. Chen, Prediction algorithm of pm2.5 mass concentration based on adaptive bp neural network, Computing, 100 (2018), 825-838.  doi: 10.1007/s00607-018-0628-3.  Google Scholar

[3]

M. ColomboD. Cumming and S. Vismara, Governmental venture capital for innovative young firms, Journal of Technology Transfer, 41 (2016), 10-24.   Google Scholar

[4]

T. CongJ. Hong and O. Dong, Ntb branch predictor: Dynamic branch predictor for high-performance embedded processors, Journal of Supercomputing, 72 (2016), 1679-1693.   Google Scholar

[5]

M. DiM. Mottolese and B. Di, The cytoskeleton regulatory protein hmena (enah) is overexpressed in human benign breast lesions with high risk of transformation and human epidermal growth factor receptor-2-positive/hormonal receptor-negative tumors, Clinical Cancer Research, 12 (2016), 1470-1478.   Google Scholar

[6]

M. Dorado-MorenoA. Sianes and C. Hervás-Martínez, From outside to hyper-globalisation: An artificial neural network ordinal classifier applied to measure the extent of globalization, Quality and Quantity, 50 (2016), 549-576.  doi: 10.1007/s11135-015-0163-7.  Google Scholar

[7]

G. FranaM. Almeida and S. Bonnet, Nowcasting model of low wind profile based on neural network using sodar data at guarulhos airport, brazil, International Journal of Remote Sensing, 39 (2018), 2506-2517.   Google Scholar

[8]

X. FuF. Wang and J. Shang, Optimized bp neural network algorithm based on multi-child genetic algorithm, Computer Simulation, 33 (2016), 258-263.   Google Scholar

[9]

J. GaoX. Wu and W. Gao, Review on inductive contactless power transfer technology, Journal of Power Supply, 15 (2017), 166-178.   Google Scholar

[10]

M. GuerreroD. Urbano and A. Fayolle, Entrepreneurial activity and regional competitiveness: Evidence from european entrepreneurial universities, Journal of Technology Transfer, 41 (2016), 105-131.  doi: 10.1007/s10961-014-9377-4.  Google Scholar

[11]

E. Jenelius and H. Koutsopoulos, Urban network travel time prediction based on a probabilistic principal component analysis model of probe data, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 436-445.  doi: 10.1109/TITS.2017.2703652.  Google Scholar

[12]

M. Joshanloo and W. Dan, Religiosity reduces the negative influence of injustice on subjective well-being: a study in 121 nations, Applied Research in Quality of Life, 11 (2016), 601-612.  doi: 10.1007/s11482-014-9384-5.  Google Scholar

[13]

S. KimK. Um and H. Kim, Hospital career management systems and their effects on the psychological state and career attitudes of nurses, Service Business, 10 (2016), 87-112.  doi: 10.1007/s11628-014-0257-7.  Google Scholar

[14]

W. Peng and Q. Huang, Research on complex information system evolution process, Journal of China Academy of Electronics and Information Technology, 12 (2017), 37-42.   Google Scholar

[15]

B. Song, Study on construction technology and engineering management of water conservancy and hydropower projects, Automation and Instrumentation, 10 (2017), 170-171.   Google Scholar

[16]

I. SzcsB. Schlegelmilch and T. Rusch, Linking cause assessment, corporate philanthropy, and corporate reputation, Journal of the Academy of Marketing Science, 44 (2016), 376-396.  doi: 10.1007/s11747-014-0417-2.  Google Scholar

[17]

J. Tremblay and I. Abi-Zeid, Value-based argumentation for policy decision analysis: Methodology and an exploratory case study of a hydroelectric project in québec, Annals of Operations Research, 236 (2016), 233-253.  doi: 10.1007/s10479-014-1774-4.  Google Scholar

[18]

H. UzunZ. Yldz and J. Goldfarb, Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis, Bioresource Technology, 234 (2017), 122-130.  doi: 10.1016/j.biortech.2017.03.015.  Google Scholar

[19]

H. Wang and X. Zhang, Game theoretical transportation network design among multiple regions, Annals of Operations Research, 249 (2017), 97-117.  doi: 10.1007/s10479-014-1700-9.  Google Scholar

[20]

Y. WangS. Hu and F. Cao, Research prospect of cathode materials for lithium ion battery, Chinese Journal of Power Sources, 41 (2017), 638-640.   Google Scholar

[21]

S. XuZ. He and R. Long, Impacts of economic growth and urbanization on co2 emissions: Regional differences in china based on panel estimation, Regional Environmental Change, 16 (2016), 777-787.  doi: 10.1007/s10113-015-0795-0.  Google Scholar

[22]

J. Zhou and X. Hu, Knowledge sharing and life satisfaction: The roles of colleague relationships and gender, Social Indicators Research, 126 (2016), 379-394.   Google Scholar

Figure 1.  Diagram of the Relation between Urban Growth Expansion and Economic Development at County Level
Figure 2.  Modular structure of BP neural network
Figure 3.  Prediction accuracy of models with different parameter settings
Figure 4.  Contrast chart between predicted growth boundary path and actual growth boundary path of a city in 2015
Table 1.  Prediction of Urban Land Growth Change in the County in 2015 Based on Different Parameter Combinations in the Model
Land type (a, T) 2015 -$\infty$, 0.7 1.1, +0.7 1.6, +0.7 2.1, +0.7 1.1, 0.8
The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$
Live 2399.59 2482.3 3.44 2620.82 9.21 2820.92 17.55 2943.3 22.65 2614.72 8.95
Comm ercial clothing 256.35 287.69 12.21 257.4 0.4 256.84 0.18 257.42 0.41 257.42 0.41
Working condi tion clothing storage 65.78 71.76 9.08 67.98 3.34 67.84 3.12 68.66 4.37 67.98 3.33
Road traffic 81.77 81.76 -0.01 82.62 1.03 84.19 2.95 82.6 1 82.61 1.02
Public manage ment and services 514.43 518.13 0.71 519.4 0.96 521.28 1.32 519.8 1.04 518.75 0.83
Waters 1.34 1.32 -1.71 1.4 4.58 1.4 4.47 1.44 7.24 1.4 4.24
Public green space 22.89 22.65 -1.05 22.78 -0.47 22.74 -0.65 22.63 -1.11 22.85 -0.18
Other 1722.61 1592.47 -7.54 1568.3 -8.95 1549.05 -10.07 1528.2 -11.3 1572.85 -9.68
Land type (a, T) 2015 -$\infty$, 0.7 1.1, +0.7 1.6, +0.7 2.1, +0.7 1.1, 0.8
The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$ The meas ure of area / $hm^{2}$ Growth rate /$\%$
Live 2399.59 2482.3 3.44 2620.82 9.21 2820.92 17.55 2943.3 22.65 2614.72 8.95
Comm ercial clothing 256.35 287.69 12.21 257.4 0.4 256.84 0.18 257.42 0.41 257.42 0.41
Working condi tion clothing storage 65.78 71.76 9.08 67.98 3.34 67.84 3.12 68.66 4.37 67.98 3.33
Road traffic 81.77 81.76 -0.01 82.62 1.03 84.19 2.95 82.6 1 82.61 1.02
Public manage ment and services 514.43 518.13 0.71 519.4 0.96 521.28 1.32 519.8 1.04 518.75 0.83
Waters 1.34 1.32 -1.71 1.4 4.58 1.4 4.47 1.44 7.24 1.4 4.24
Public green space 22.89 22.65 -1.05 22.78 -0.47 22.74 -0.65 22.63 -1.11 22.85 -0.18
Other 1722.61 1592.47 -7.54 1568.3 -8.95 1549.05 -10.07 1528.2 -11.3 1572.85 -9.68
Table 2.  Comparison of Prediction Accuracy of Thirteen Models
Direction Range left ($\bullet$) Area Covered by Real Growth Path($km^{2}$) Paper model Cellular Automata model Multi-agent model
Predicted value ($km^{2}$) Area matching value D ($\%$) Predicted value ($km^{2}$) Area matching value D ($\%$) Predicted value ($km^{2}$) Area matching value D ($\%$)
East 0-90 109.5 109.4 99.91$\%$ 103.1 94.16$\%$ 101.1 92.33$\%$
West 90-180 72.34 72.33 99.99$\%$ 70.21 97.06$\%$ 68.22 94.30$\%$
South 180-270 88.23 88.21 99.98$\%$ 85.34 96.75$\%$ 81.23 92.07$\%$
North 270-360 87.34 86.99 99.60$\%$ 85.23 97.58$\%$ 81.23 93.00$\%$
Whole 0-360 357.41 356.93 99.87$\%$ 343.88 96.21$\%$ 331.78 92.83$\%$
Direction Range left ($\bullet$) Area Covered by Real Growth Path($km^{2}$) Paper model Cellular Automata model Multi-agent model
Predicted value ($km^{2}$) Area matching value D ($\%$) Predicted value ($km^{2}$) Area matching value D ($\%$) Predicted value ($km^{2}$) Area matching value D ($\%$)
East 0-90 109.5 109.4 99.91$\%$ 103.1 94.16$\%$ 101.1 92.33$\%$
West 90-180 72.34 72.33 99.99$\%$ 70.21 97.06$\%$ 68.22 94.30$\%$
South 180-270 88.23 88.21 99.98$\%$ 85.34 96.75$\%$ 81.23 92.07$\%$
North 270-360 87.34 86.99 99.60$\%$ 85.23 97.58$\%$ 81.23 93.00$\%$
Whole 0-360 357.41 356.93 99.87$\%$ 343.88 96.21$\%$ 331.78 92.83$\%$
[1]

Lidong Liu, Fajie Wei, Shenghan Zhou. Major project risk assessment method based on BP neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1053-1064. doi: 10.3934/dcdss.2019072

[2]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[5]

Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 1005-1012. doi: 10.3934/proc.2007.2007.1005

[6]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085

[7]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[8]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[9]

Shyan-Shiou Chen, Chih-Wen Shih. Asymptotic behaviors in a transiently chaotic neural network. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 805-826. doi: 10.3934/dcds.2004.10.805

[10]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049

[11]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[12]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[13]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[14]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[15]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[16]

Yixin Guo, Aijun Zhang. Existence and nonexistence of traveling pulses in a lateral inhibition neural network. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1729-1755. doi: 10.3934/dcdsb.2016020

[17]

Jianhong Wu, Ruyuan Zhang. A simple delayed neural network with large capacity for associative memory. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 851-863. doi: 10.3934/dcdsb.2004.4.851

[18]

Sanjay K. Mazumdar, Cheng-Chew Lim. A neural network based anti-skid brake system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 321-338. doi: 10.3934/dcds.1999.5.321

[19]

K. L. Mak, J. G. Peng, Z. B. Xu, K. F. C. Yiu. A novel neural network for associative memory via dynamical systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 573-590. doi: 10.3934/dcdsb.2006.6.573

[20]

Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen. How convolutional neural networks see the world --- A survey of convolutional neural network visualization methods. Mathematical Foundations of Computing, 2018, 1 (2) : 149-180. doi: 10.3934/mfc.2018008

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]