# American Institute of Mathematical Sciences

• Previous Article
Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $\mathbb R^N$$^\diamondsuit$
• DCDS-S Home
• This Issue
• Next Article
Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential

## Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting

 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

*Corresponding author: Fanwei Meng

Received  May 2019 Revised  September 2019 Published  February 2020

The present paper considers a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. The existence of the nontrivial positive equilibria is discussed, and some sufficient conditions for locally asymptotically stability of one of the positive equilibria are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time delays as the bifurcation parameters. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out to support the analytical results.

Citation: Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020259
##### References:

show all references

##### References:
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = \tau_2 = 0$. The positive equilibrium point $E_2(0.68, 0.32)$ is locally asymptotically stable. Here the initial value is $(0.8, 0.6)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = 0$, $\tau_2 = 2.8 < \tau_{20} = 2.91$. The positive equilibrium point $E_2(0.48, 0.52)$ is locally asymptotically stable. Here the initial value is $(0.5,0.5)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = 0$, $\tau_2 = 2.92 > \tau_{20} = 2.91$. The positive equilibrium point $E_2(0.48, 0.52)$ is unstable. Here the initial value is $(0.5,0.5)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = 2.0 < \tau_{30} = 2.11$, $\tau_2 = 0$. The positive equilibrium point $E_2(0.53, 0.47)$ is locally asymptotically stable. Here the initial value is $(0.5,0.5)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = 2.1185 > \tau_{30} = 2.11$, $\tau_2 = 0$. The positive equilibrium point $E_2(0.53, 0.47)$ is unstable. Here the initial value is $(0.5,0.5)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = \tau_2 = 1.85 < \tau_{40} = 1.92$. The positive equilibrium point $E_2(0.53, 0.47)$ is locally asymptotically stable. Here the initial value is $(0.55,0.6)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = \tau_2 = 1.926 > \tau_{40} = 1.92$. The positive equilibrium point $E_2(0.53, 0.47)$ is unstable. Here the initial value is $(0.55,0.6)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = 3 < \tau_{50} = 4.90$, $\tau_2 = 1.8$. The positive equilibrium point $E_2(0.48, 0.52)$ is locally asymptotically stable. Here the initial value is $(0.55,0.6)$
The diagram (a) shows the time series of $x(t)$, $y(t)$ and the diagram (b) shows the phase portrait of model (3) with $\tau_1 = 6 > \tau_{50} = 4.90$, $\tau_2 = 1.8$. The positive equilibrium point $E_2(0.48, 0.52)$ is unstable. Here the initial value is $(0.55,0.6)$
 [1] Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 [2] Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129 [3] Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095 [4] Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 [5] Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 [6] Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 [7] Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 [8] Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 [9] Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 [10] Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 [11] Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 [12] Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069 [13] Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103 [14] Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 [15] Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 [16] Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010 [17] Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 [18] Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091 [19] Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 [20] Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables