[1]
|
L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Acad. Sci. Paris. Ser. I, 346 (2008), 1007-1012.
doi: 10.1016/j.crma.2008.07.015.
|
[2]
|
B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general $2D$ meshes, Num. Meth. PDE., 23 (2007), 145-195.
doi: 10.1002/num.20170.
|
[3]
|
H. Belhadj, M. Fihri, S. Khallouq and N. Nagid, Optimal number of schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 21-34.
doi: 10.3934/dcdss.2018002.
|
[4]
|
P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), 1097-1120.
doi: 10.1137/0723075.
|
[5]
|
F. Boyer, F. Hubert and S. Krell, Non-overlapping Schwarz algorithm for solving two-dimensional m-DDFV schemes, IMA J. Numer. Anal., 30 (2010), 1062-1100.
doi: 10.1093/imanum/drp001.
|
[6]
|
S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math., 83 (1999), 187-203.
doi: 10.1007/s002110050446.
|
[7]
|
T. F. Chan, E. Weinan and J. Sun, Domain decomposition interface preconditioners for fourth-order elliptic problems, Appl. Numer. Math., 8 (1991), 317-331.
doi: 10.1016/0168-9274(91)90072-8.
|
[8]
|
Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM:M2AN, 33 (1999), 493-516.
doi: 10.1051/m2an:1999149.
|
[9]
|
K. Domelevo and P. Omnès, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM:M2AN, 39 (2005), 1203-1249.
doi: 10.1051/m2an:2005047.
|
[10]
|
R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations, Numer. Math., 82 (1999), 91-116.
doi: 10.1007/s002110050412.
|
[11]
|
R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.
doi: 10.1093/imanum/drn084.
|
[12]
|
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), Elsevier, 7 (2000), 713–1020.
|
[13]
|
R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in ISTE. Finite Volumes for Complex Applications V (eds. R. Eymard and J.-M. Hérard), Wiley, 5 (2008), 659–692.
|
[14]
|
F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), 481-499.
doi: 10.1006/jcph.2000.6466.
|
[15]
|
L. Mansfield, On the conjugate gradient solution of the Schur complement system obtained from domain decomposition, SIAM J. Numer. Anal., 27 (1990), 1612-1620.
doi: 10.1137/0727094.
|
[16]
|
A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, 1999.
|