doi: 10.3934/dcdss.2020260

Parallelization of a finite volumes discretization for anisotropic diffusion problems using an improved Schur complement technique

1. 

Abdelmalek Essaadi University, Faculty of Sciences and Techniques of Tangier, Laboratory of Mathematics and Applications, Department of Mathematics, BP. 416, Tangier 90000, Morocco

2. 

Moulay Ismail University of Meknes, Faculty of Sciences and Techniques of Errachidia, Department of Mathematics, BP. 509, Boutalamine Errachidia 57000, Morocco

3. 

Moulay Ismail University of Meknes, Faculty of Sciences of Meknes, Department of Mathematics and Informatics, BP. 11201 Zitoune Meknes, Morocco

* Corresponding author: Samir Khallouq

Received  March 2019 Revised  June 2019 Published  February 2020

We present in this paper a new algorithm combining a finite volume method with an improved Schur complement technique to solve $ 2D $ anisotropic diffusion problems on general meshes. After having proved the convergence of the finite volume method, we have given a description of the proposed algorithm in the case of two nonoverlapping subdomains. Several numerical tests are achieved which illustrate the theoretical results of convergence of the finite volume method and show the advantages of the proposed algorithm.

Citation: Hassan Belhadj, Samir Khallouq, Mohamed Rhoudaf. Parallelization of a finite volumes discretization for anisotropic diffusion problems using an improved Schur complement technique. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020260
References:
[1]

L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Acad. Sci. Paris. Ser. I, 346 (2008), 1007-1012.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[2]

B. AndreianovF. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general $2D$ meshes, Num. Meth. PDE., 23 (2007), 145-195.  doi: 10.1002/num.20170.  Google Scholar

[3]

H. BelhadjM. FihriS. Khallouq and N. Nagid, Optimal number of schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 21-34.  doi: 10.3934/dcdss.2018002.  Google Scholar

[4]

P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), 1097-1120.  doi: 10.1137/0723075.  Google Scholar

[5]

F. BoyerF. Hubert and S. Krell, Non-overlapping Schwarz algorithm for solving two-dimensional m-DDFV schemes, IMA J. Numer. Anal., 30 (2010), 1062-1100.  doi: 10.1093/imanum/drp001.  Google Scholar

[6]

S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math., 83 (1999), 187-203.  doi: 10.1007/s002110050446.  Google Scholar

[7]

T. F. ChanE. Weinan and J. Sun, Domain decomposition interface preconditioners for fourth-order elliptic problems, Appl. Numer. Math., 8 (1991), 317-331.  doi: 10.1016/0168-9274(91)90072-8.  Google Scholar

[8]

Y. CoudièreJ.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM:M2AN, 33 (1999), 493-516.  doi: 10.1051/m2an:1999149.  Google Scholar

[9]

K. Domelevo and P. Omnès, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM:M2AN, 39 (2005), 1203-1249.  doi: 10.1051/m2an:2005047.  Google Scholar

[10]

R. EymardT. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations, Numer. Math., 82 (1999), 91-116.  doi: 10.1007/s002110050412.  Google Scholar

[11]

R. EymardT. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.  doi: 10.1093/imanum/drn084.  Google Scholar

[12]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), Elsevier, 7 (2000), 713–1020.  Google Scholar

[13]

R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in ISTE. Finite Volumes for Complex Applications V (eds. R. Eymard and J.-M. Hérard), Wiley, 5 (2008), 659–692.  Google Scholar

[14]

F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), 481-499.  doi: 10.1006/jcph.2000.6466.  Google Scholar

[15]

L. Mansfield, On the conjugate gradient solution of the Schur complement system obtained from domain decomposition, SIAM J. Numer. Anal., 27 (1990), 1612-1620.  doi: 10.1137/0727094.  Google Scholar

[16] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, 1999.   Google Scholar

show all references

References:
[1]

L. Agelas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Acad. Sci. Paris. Ser. I, 346 (2008), 1007-1012.  doi: 10.1016/j.crma.2008.07.015.  Google Scholar

[2]

B. AndreianovF. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general $2D$ meshes, Num. Meth. PDE., 23 (2007), 145-195.  doi: 10.1002/num.20170.  Google Scholar

[3]

H. BelhadjM. FihriS. Khallouq and N. Nagid, Optimal number of schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 21-34.  doi: 10.3934/dcdss.2018002.  Google Scholar

[4]

P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), 1097-1120.  doi: 10.1137/0723075.  Google Scholar

[5]

F. BoyerF. Hubert and S. Krell, Non-overlapping Schwarz algorithm for solving two-dimensional m-DDFV schemes, IMA J. Numer. Anal., 30 (2010), 1062-1100.  doi: 10.1093/imanum/drp001.  Google Scholar

[6]

S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math., 83 (1999), 187-203.  doi: 10.1007/s002110050446.  Google Scholar

[7]

T. F. ChanE. Weinan and J. Sun, Domain decomposition interface preconditioners for fourth-order elliptic problems, Appl. Numer. Math., 8 (1991), 317-331.  doi: 10.1016/0168-9274(91)90072-8.  Google Scholar

[8]

Y. CoudièreJ.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM:M2AN, 33 (1999), 493-516.  doi: 10.1051/m2an:1999149.  Google Scholar

[9]

K. Domelevo and P. Omnès, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM:M2AN, 39 (2005), 1203-1249.  doi: 10.1051/m2an:2005047.  Google Scholar

[10]

R. EymardT. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations, Numer. Math., 82 (1999), 91-116.  doi: 10.1007/s002110050412.  Google Scholar

[11]

R. EymardT. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30 (2010), 1009-1043.  doi: 10.1093/imanum/drn084.  Google Scholar

[12]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), Elsevier, 7 (2000), 713–1020.  Google Scholar

[13]

R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in ISTE. Finite Volumes for Complex Applications V (eds. R. Eymard and J.-M. Hérard), Wiley, 5 (2008), 659–692.  Google Scholar

[14]

F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160 (2000), 481-499.  doi: 10.1006/jcph.2000.6466.  Google Scholar

[15]

L. Mansfield, On the conjugate gradient solution of the Schur complement system obtained from domain decomposition, SIAM J. Numer. Anal., 27 (1990), 1612-1620.  doi: 10.1137/0727094.  Google Scholar

[16] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford University Press, 1999.   Google Scholar
Figure 1.  DDFV mesh
Figure 2.  Diamond cell $ \mathcal{D}_{\sigma,\sigma^{*}} $
Figure 3.  A DDFV mesh $ \mathcal{T} $ of the whole domain $ \Omega $
Figure 4.  The compatible meshes $ \mathcal{T}_{1} $ and $ \mathcal{T}_{2} $, of the whole domain $ \Omega $, corresponding to the DDFV mesh $ \mathcal{T} $ of figure 3
Figure 5.  Two independent DDFV meshes $ \mathcal{T}_{1} $ and $ \mathcal{T}_{2} $ for both subdomains $ \Omega_{i} $
Figure 6.  The compatible meshes corresponding to two independent DDFV meshes $ \mathcal{T}_{1} $ and $ \mathcal{T}_{2} $ of figure 5
Figure 7.  Primal mesh $ Mesh_{1} $ (left) and $ Mesh_{2} $ (right)
Figure 8.  Analytic solution (left) and DDFV solution (right) for the test case $ 1 $ and $ h = 0.0118 $
Figure 9.  Analytic solution (left) and DDFV solution (right) for the test case $ 2 $ and $ h = 0.0207 $
Figure 10.  Primal mesh $ Mesh_{2,1} $ (left) and $ Mesh_{1,3} $ (right)
Figure 11.  CPU time to solve the test case $ 2 $ for different numbers of diamonds $ \mathcal{D} $
Table 1.  $ L^{\infty}(\Omega) $ and $ L^{2}(\Omega) $ errors by DDFV, for test case $ 1 $ and for different values of $ h $
Mesh Nbr of $ \mathcal{D} $ $ h $ $ e_{h,L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h,L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1} $ $ 488 $ $ 0.1184 $ $ 0.0037 $ - $ 5.3348 $E-$ 04 $ -
$ Mesh_{2} $ $ 1912 $ $ 0.0645 $ $ 8.5460 $E-$ 04 $ $ 2.4127 $ $ 1.3259 $E-$ 04 $ $ 2.2920 $
$ Mesh_{3} $ $ 7568 $ $ 0.0364 $ $ 2.5019 $E-$ 04 $ $ 2.1472 $ $ 3.3329 $E-$ 05 $ $ 2.4136 $
$ Mesh_{4} $ $ 30112 $ $ 0.0207 $ $ 8.2489 $E-$ 05 $ $ 1.9658 $ $ 8.3355 $E-$ 06 $ $ 2.4554 $
Average $ 2.1752 $ $ 2.3870 $
Mesh Nbr of $ \mathcal{D} $ $ h $ $ e_{h,L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h,L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1} $ $ 488 $ $ 0.1184 $ $ 0.0037 $ - $ 5.3348 $E-$ 04 $ -
$ Mesh_{2} $ $ 1912 $ $ 0.0645 $ $ 8.5460 $E-$ 04 $ $ 2.4127 $ $ 1.3259 $E-$ 04 $ $ 2.2920 $
$ Mesh_{3} $ $ 7568 $ $ 0.0364 $ $ 2.5019 $E-$ 04 $ $ 2.1472 $ $ 3.3329 $E-$ 05 $ $ 2.4136 $
$ Mesh_{4} $ $ 30112 $ $ 0.0207 $ $ 8.2489 $E-$ 05 $ $ 1.9658 $ $ 8.3355 $E-$ 06 $ $ 2.4554 $
Average $ 2.1752 $ $ 2.3870 $
Table 2.  $ L^{\infty}(\Omega) $ and $ L^{2}(\Omega) $ errors by DDFV, for test case $ 2 $ and for different values of $ h $
Mesh Nbr of $ \mathcal{D} $ $ h $ $ e_{h,L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h,L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1} $ $ 488 $ $ 0.1184 $ $ 0.2402 $ - $ 0.0452 $ -
$ Mesh_{2} $ $ 1912 $ $ 0.0645 $ $ 0.0423 $ $ 2.8592 $ $ 0.0106 $ $ 2.3876 $
$ Mesh_{3} $ $ 7568 $ $ 0.0364 $ $ 0.0132 $ $ 2.0356 $ $ 0.0028 $ $ 2.3269 $
$ Mesh_{4} $ $ 30112 $ $ 0.0207 $ $ 0.0048 $ $ 1.7922 $ $ 7.3969 $E-$ 04 $ $ 2.3584 $
Average $ 2.2290 $ $ 2.3576 $
Mesh Nbr of $ \mathcal{D} $ $ h $ $ e_{h,L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h,L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1} $ $ 488 $ $ 0.1184 $ $ 0.2402 $ - $ 0.0452 $ -
$ Mesh_{2} $ $ 1912 $ $ 0.0645 $ $ 0.0423 $ $ 2.8592 $ $ 0.0106 $ $ 2.3876 $
$ Mesh_{3} $ $ 7568 $ $ 0.0364 $ $ 0.0132 $ $ 2.0356 $ $ 0.0028 $ $ 2.3269 $
$ Mesh_{4} $ $ 30112 $ $ 0.0207 $ $ 0.0048 $ $ 1.7922 $ $ 7.3969 $E-$ 04 $ $ 2.3584 $
Average $ 2.2290 $ $ 2.3576 $
Table 3.  $ L^{\infty}(\Omega) $ and $ L^{2}(\Omega) $ errors by DDFV-SC, for the test case $ 1 $ and for different mesh $ Mesh_{i,i} $ with $ i = 1,\ldots,4 $
Mesh Nbr of $ \mathcal{D} $ in $ \Omega_{1}\cup \Omega_{2} $ $ h $ $ e_{h_{1,2},L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h_{1,2},L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1,1} $ $ 546 $ $ 0.1191 $ $ 0.0020 $ $ - $ $ 5.4853 $E-$ 04 $ $ - $
$ Mesh_{2,2} $ $ 2124 $ $ 0.0626 $ $ 5.6512 $E-$ 04 $ $ 1.9650 $ $ 1.3729 $E-$ 04 $ $ 2.1535 $
$ Mesh_{3,3} $ $ 8376 $ $ 0.0354 $ $ 2.0197 $E-$ 04 $ $ 1.8050 $ $ 3.4357 $E-$ 05 $ $ 2.4301 $
$ Mesh_{4,4} $ $ 33264 $ $ 0.0200 $ $ 7.0126 $E-$ 05 $ $ 1.8527 $ $ 8.5752 $E-$ 06 $ $ 2.4308 $
Average $ 1.8742 $ $ 2.3381 $
Mesh Nbr of $ \mathcal{D} $ in $ \Omega_{1}\cup \Omega_{2} $ $ h $ $ e_{h_{1,2},L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h_{1,2},L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1,1} $ $ 546 $ $ 0.1191 $ $ 0.0020 $ $ - $ $ 5.4853 $E-$ 04 $ $ - $
$ Mesh_{2,2} $ $ 2124 $ $ 0.0626 $ $ 5.6512 $E-$ 04 $ $ 1.9650 $ $ 1.3729 $E-$ 04 $ $ 2.1535 $
$ Mesh_{3,3} $ $ 8376 $ $ 0.0354 $ $ 2.0197 $E-$ 04 $ $ 1.8050 $ $ 3.4357 $E-$ 05 $ $ 2.4301 $
$ Mesh_{4,4} $ $ 33264 $ $ 0.0200 $ $ 7.0126 $E-$ 05 $ $ 1.8527 $ $ 8.5752 $E-$ 06 $ $ 2.4308 $
Average $ 1.8742 $ $ 2.3381 $
Table 4.  $ L^{\infty}(\Omega) $ and $ L^{2}(\Omega) $ errors by DDFV-SC, for the test case $ 2 $ and for different mesh $ Mesh_{i,i} $ with $ i = 1,\ldots,4 $
Mesh Nbr of $ \mathcal{D} $ in $ \Omega_{1}\cup \Omega_{2} $ $ h $ $ e_{h_{1,2},L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h_{1,2},L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1,1} $ $ 546 $ $ 0.1191 $ $ 0.3694 $ $ - $ $ 0.0980 $ $ - $
$ Mesh_{2,2} $ $ 2124 $ $ 0.0626 $ $ 0.0733 $ $ 2.5145 $ $ 0.0152 $ $ 2.8975 $
$ Mesh_{3,3} $ $ 8376 $ $ 0.0354 $ $ 0.0191 $ $ 2.3592 $ $ 0.0036 $ $ 2.5267 $
$ Mesh_{4,4} $ $ 33264 $ $ 0.0200 $ $ 0.0053 $ $ 2.2452 $ $ 8.6492 $E-$ 04 $ $ 2.4976 $
Average $ 2.3730 $ $ 2.6406 $
Mesh Nbr of $ \mathcal{D} $ in $ \Omega_{1}\cup \Omega_{2} $ $ h $ $ e_{h_{1,2},L^{\infty}} $ $ EOC_{L^{\infty}} $ $ e_{h_{1,2},L^{2}} $ $ EOC_{L^{2}} $
$ Mesh_{1,1} $ $ 546 $ $ 0.1191 $ $ 0.3694 $ $ - $ $ 0.0980 $ $ - $
$ Mesh_{2,2} $ $ 2124 $ $ 0.0626 $ $ 0.0733 $ $ 2.5145 $ $ 0.0152 $ $ 2.8975 $
$ Mesh_{3,3} $ $ 8376 $ $ 0.0354 $ $ 0.0191 $ $ 2.3592 $ $ 0.0036 $ $ 2.5267 $
$ Mesh_{4,4} $ $ 33264 $ $ 0.0200 $ $ 0.0053 $ $ 2.2452 $ $ 8.6492 $E-$ 04 $ $ 2.4976 $
Average $ 2.3730 $ $ 2.6406 $
Table 5.  $ L^{\infty}(\Omega) $ and $ L^{2}(\Omega) $ errors by DDFV-SC, for the test case $ 3 $ and for different mesh $ Mesh_{i,j} $ with $ i,j = 1,\ldots,4 $
Mesh Nbr of $ \mathcal{D} $ in $ \Omega_{1} $ Nbr of $ \mathcal{D} $ in $ \Omega_{2} $ $ h_{1} $ $ h_{2} $ $ e_{h_{1,2},L^{\infty}} $ $ e_{h_{1,2},L^{2}} $
$ Mesh_{1,1} $ $ 273 $ $ 273 $ $ 0.1191 $ $ 0.1187 $ $ 0.0238 $ $ 0.0068 $
$ Mesh_{2,1} $ $ 1062 $ $ 283 $ $ 0.0626 $ $ 0.1187 $ $ 0.0195 $ $ 0.0053 $
$ Mesh_{2,2} $ $ 1062 $ $ 1062 $ $ 0.0626 $ $ 0.0621 $ $ 0.0129 $ $ 0.0035 $
$ Mesh_{3,2} $ $ 4188 $ $ 1082 $ $ 0.0354 $ $ 0.0621 $ $ 0.0103 $ $ 0.0028 $
$ Mesh_{3,3} $ $ 4188 $ $ 4188 $ $ 0.0354 $ $ 0.0347 $ $ 0.0066 $ $ 0.0018 $
$ Mesh_{4,3} $ $ 16632 $ $ 4228 $ $ 0.0200 $ $ 0.0347 $ $ 0.0053 $ $ 0.0014 $
$ Mesh_{4,4} $ $ 16632 $ $ 16632 $ $ 0.0200 $ $ 0.0191 $ $ 0.0033 $ $ 9.1142 $E-$ 04 $
Mesh Nbr of $ \mathcal{D} $ in $ \Omega_{1} $ Nbr of $ \mathcal{D} $ in $ \Omega_{2} $ $ h_{1} $ $ h_{2} $ $ e_{h_{1,2},L^{\infty}} $ $ e_{h_{1,2},L^{2}} $
$ Mesh_{1,1} $ $ 273 $ $ 273 $ $ 0.1191 $ $ 0.1187 $ $ 0.0238 $ $ 0.0068 $
$ Mesh_{2,1} $ $ 1062 $ $ 283 $ $ 0.0626 $ $ 0.1187 $ $ 0.0195 $ $ 0.0053 $
$ Mesh_{2,2} $ $ 1062 $ $ 1062 $ $ 0.0626 $ $ 0.0621 $ $ 0.0129 $ $ 0.0035 $
$ Mesh_{3,2} $ $ 4188 $ $ 1082 $ $ 0.0354 $ $ 0.0621 $ $ 0.0103 $ $ 0.0028 $
$ Mesh_{3,3} $ $ 4188 $ $ 4188 $ $ 0.0354 $ $ 0.0347 $ $ 0.0066 $ $ 0.0018 $
$ Mesh_{4,3} $ $ 16632 $ $ 4228 $ $ 0.0200 $ $ 0.0347 $ $ 0.0053 $ $ 0.0014 $
$ Mesh_{4,4} $ $ 16632 $ $ 16632 $ $ 0.0200 $ $ 0.0191 $ $ 0.0033 $ $ 9.1142 $E-$ 04 $
Table 6.  CPU time to solve the test case $ 1 $ for different numbers of diamonds $ \mathcal{D} $
Nbr of $ \mathcal{D} $ in $ \Omega $ CPU time for DDFV (in seconds) CPU time for DDFV-SC (in seconds)
$ 8376 $ $ 18.149494 $ $ 24.458821 $
$ 20860 $ $ 94.936105 $ $ 59.901873 $
$ 33264 $ $ 418.468599 $ $ 229.306277 $
$ 82920 $ $ 2899.437600 $ $ 1285.708950 $
$ 132576 $ $ 18312.136003 $ $ 3947.530428 $
$ 330960 $ $ 126004.456142 $ $ 7801.259200 $
Nbr of $ \mathcal{D} $ in $ \Omega $ CPU time for DDFV (in seconds) CPU time for DDFV-SC (in seconds)
$ 8376 $ $ 18.149494 $ $ 24.458821 $
$ 20860 $ $ 94.936105 $ $ 59.901873 $
$ 33264 $ $ 418.468599 $ $ 229.306277 $
$ 82920 $ $ 2899.437600 $ $ 1285.708950 $
$ 132576 $ $ 18312.136003 $ $ 3947.530428 $
$ 330960 $ $ 126004.456142 $ $ 7801.259200 $
[1]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[2]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020226

[3]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[4]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[5]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[6]

Hassan Belhadj, Mohamed Fihri, Samir Khallouq, Nabila Nagid. Optimal number of Schur subdomains: Application to semi-implicit finite volume discretization of semilinear reaction diffusion problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 21-34. doi: 10.3934/dcdss.2018002

[7]

Hong Wang, Aijie Cheng, Kaixin Wang. Fast finite volume methods for space-fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1427-1441. doi: 10.3934/dcdsb.2015.20.1427

[8]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[9]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[10]

Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems & Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055

[11]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[12]

Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823

[13]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[14]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[15]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[16]

Yanxing Cui, Chuanlong Wang, Ruiping Wen. On the convergence of generalized parallel multisplitting iterative methods for semidefinite linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 863-873. doi: 10.3934/naco.2012.2.863

[17]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[18]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[19]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[20]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]