• Previous Article
    $ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values
  • DCDS-S Home
  • This Issue
  • Next Article
    Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions
September  2021, 14(9): 3285-3303. doi: 10.3934/dcdss.2020281

Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $

1. 

Center for Applied Mathematics, Guangzhou University, Guangzhou, Guangdong, 510006, China

2. 

Department of Mathematics, Shaoyang University, Shaoyang, Hunan, 422000, China

* Corresponding author: Jianshe Yu

Received  July 2019 Revised  October 2019 Published  September 2021 Early access  March 2020

Fund Project: Research are supported by the National Natural Science Foundation of China (Grant No. 11901126), the Hunan Province Natural Science Foundation of China (Grant No. 2017JJ3222), and the China Postdoctoral Science Foundation funded project (Grant No. 2018M643039)

This work concerns with the existence and multiplicity of positive solutions for the following quasilinear Schrödinger equation
$ -\Delta u+V(x)u-\Delta(u^2)u = a(\epsilon x)g(u), \; \; \; \; x\in\mathbb R^N, $
where
$ V(x)>0 $
,
$ u>0 $
,
$ a $
and
$ g $
are continuous functions and
$ a $
has
$ m $
maximum points. With the change of variables we show that this equation has at least
$ m $
nontrivial solutions by using variational methods, the Ekeland's variational principle, and some properties of the Nehari manifold. Some recent results are improved.
Citation: Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281
References:
[1]

C. O. AlvesG. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44 (2014), 435-456.  doi: 10.12775/TMNA.2014.055.

[2]

C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $\mathbb R^N$, J. Differential Equations, 246 (2009), 1288-1311.  doi: 10.1016/j.jde.2008.08.004.

[3]

C. O. Alves and C. Torres Ledesma, Existence and multiplicity of solutions for a non-linear Schrödinger equation with non-local regional diffusion, J. Math. Phys., 58 (2017), 111507, 19pp. doi: 10.1063/1.5011724.

[4]

A. Borovskiik and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1983), 562-573. 

[5]

H. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. 

[6]

J. M. Bezerra do ÓO. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.  doi: 10.1016/j.jde.2009.11.030.

[7]

K. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.

[8]

D. CassaniJ. M. Bezerra do Ó and A. Moameni, Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 9 (2010), 281-306.  doi: 10.3934/cpaa.2010.9.281.

[9]

D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb R^N$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.

[10]

D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 443-463.  doi: 10.1017/S0308210500022836.

[11]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb R^N$ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[13]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differential Equations, 265 (2018), 1962-1983.  doi: 10.1016/j.jde.2018.04.030.

[14]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.

[15]

E. Gloss, Existence and concentration of positive solution for a quasilinear equation in $\mathbb R^N$, J. Math. Anal. Appl., 371 (2010), 465-484.  doi: 10.1016/j.jmaa.2010.05.033.

[16]

X. HeA. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.  doi: 10.1088/0951-7715/26/12/3137.

[17]

T. S. HsuH. L. Lin and C. C. Hu, Multiple positive solutions of quasilinear elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 388 (2012), 500-512.  doi: 10.1016/j.jmaa.2011.11.010.

[18]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3801-3805.  doi: 10.1143/JPSJ.50.3801.

[19]

J. Q. LiuY. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equation, II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[20]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations, I. Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[21]

J. LiuS. Chen and X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 395 (2012), 608-615.  doi: 10.1016/j.jmaa.2012.05.063.

[22]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.

[23]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.

[25]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.

[26]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$, Commun. Pure Appl. Anal., 7 (2008), 89-105.  doi: 10.3934/cpaa.2008.7.89.

[27]

K. Mahiout and C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var. Elliptic Equ., 62 (2016), 767-785.  doi: 10.1080/17476933.2016.1243669.

[28]

O. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations that include supercritical exponents with nonlinearities that are indefinite in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.

[29]

Y. Miyamoto and Y. Naito, Singular extremal solutions for supercritical elliptic equations in a ball, J. Differential Equations, 265 (2018), 2842-2885.  doi: 10.1016/j.jde.2018.04.055.

[30]

Q. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations involving supercritical exponent with nonlinearities indefinitie in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.

[31]

M. PoppenberyK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[32]

M. D. Pina and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.

[33]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[34]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949.  doi: 10.1016/j.na.2009.11.037.

[35]

W. WangX. Yang and F. K. Zhao, Existence and concentration of ground states to a quasilinear problem with competing potentials, Nonlinear Anal., 102 (2014), 120-132.  doi: 10.1016/j.na.2014.01.025.

[36]

Y. J. WangY. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comput., 216 (2010), 849-856.  doi: 10.1016/j.amc.2010.01.091.

[37]

M. Willem, Minimax Theorems, Birkhauser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.

[38]

X. Wu and K. Wu, Existence of positive solutions, negative solutions and high energy solutions for quasilinear elliptic equations on $\mathbb R^N$, Nonlinear Anal. Real World Appl., 16 (2014), 48-64. 

[39]

J. ZhangX. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.

show all references

References:
[1]

C. O. AlvesG. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44 (2014), 435-456.  doi: 10.12775/TMNA.2014.055.

[2]

C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $\mathbb R^N$, J. Differential Equations, 246 (2009), 1288-1311.  doi: 10.1016/j.jde.2008.08.004.

[3]

C. O. Alves and C. Torres Ledesma, Existence and multiplicity of solutions for a non-linear Schrödinger equation with non-local regional diffusion, J. Math. Phys., 58 (2017), 111507, 19pp. doi: 10.1063/1.5011724.

[4]

A. Borovskiik and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1983), 562-573. 

[5]

H. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. 

[6]

J. M. Bezerra do ÓO. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.  doi: 10.1016/j.jde.2009.11.030.

[7]

K. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.

[8]

D. CassaniJ. M. Bezerra do Ó and A. Moameni, Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 9 (2010), 281-306.  doi: 10.3934/cpaa.2010.9.281.

[9]

D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb R^N$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.

[10]

D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 443-463.  doi: 10.1017/S0308210500022836.

[11]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb R^N$ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[13]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differential Equations, 265 (2018), 1962-1983.  doi: 10.1016/j.jde.2018.04.030.

[14]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.

[15]

E. Gloss, Existence and concentration of positive solution for a quasilinear equation in $\mathbb R^N$, J. Math. Anal. Appl., 371 (2010), 465-484.  doi: 10.1016/j.jmaa.2010.05.033.

[16]

X. HeA. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.  doi: 10.1088/0951-7715/26/12/3137.

[17]

T. S. HsuH. L. Lin and C. C. Hu, Multiple positive solutions of quasilinear elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 388 (2012), 500-512.  doi: 10.1016/j.jmaa.2011.11.010.

[18]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3801-3805.  doi: 10.1143/JPSJ.50.3801.

[19]

J. Q. LiuY. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equation, II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[20]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations, I. Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[21]

J. LiuS. Chen and X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 395 (2012), 608-615.  doi: 10.1016/j.jmaa.2012.05.063.

[22]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.

[23]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.

[25]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.

[26]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$, Commun. Pure Appl. Anal., 7 (2008), 89-105.  doi: 10.3934/cpaa.2008.7.89.

[27]

K. Mahiout and C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var. Elliptic Equ., 62 (2016), 767-785.  doi: 10.1080/17476933.2016.1243669.

[28]

O. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations that include supercritical exponents with nonlinearities that are indefinite in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.

[29]

Y. Miyamoto and Y. Naito, Singular extremal solutions for supercritical elliptic equations in a ball, J. Differential Equations, 265 (2018), 2842-2885.  doi: 10.1016/j.jde.2018.04.055.

[30]

Q. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations involving supercritical exponent with nonlinearities indefinitie in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.

[31]

M. PoppenberyK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[32]

M. D. Pina and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.

[33]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[34]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949.  doi: 10.1016/j.na.2009.11.037.

[35]

W. WangX. Yang and F. K. Zhao, Existence and concentration of ground states to a quasilinear problem with competing potentials, Nonlinear Anal., 102 (2014), 120-132.  doi: 10.1016/j.na.2014.01.025.

[36]

Y. J. WangY. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comput., 216 (2010), 849-856.  doi: 10.1016/j.amc.2010.01.091.

[37]

M. Willem, Minimax Theorems, Birkhauser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.

[38]

X. Wu and K. Wu, Existence of positive solutions, negative solutions and high energy solutions for quasilinear elliptic equations on $\mathbb R^N$, Nonlinear Anal. Real World Appl., 16 (2014), 48-64. 

[39]

J. ZhangX. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.

[1]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[2]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[3]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[4]

Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021036

[5]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[6]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214

[7]

Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145

[8]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[9]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[10]

Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010

[11]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[12]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[13]

Jianqing Chen, Qian Zhang. Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term. Communications on Pure and Applied Analysis, 2022, 21 (2) : 669-686. doi: 10.3934/cpaa.2021193

[14]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[15]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[16]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[17]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[18]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[19]

Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036

[20]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (289)
  • HTML views (612)
  • Cited by (0)

Other articles
by authors

[Back to Top]