• Previous Article
    Mathematical model of diabetes and its complication involving fractional operator without singular kernal
  • DCDS-S Home
  • This Issue
  • Next Article
    Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting
doi: 10.3934/dcdss.2020281

Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $

1. 

Center for Applied Mathematics, Guangzhou University, Guangzhou, Guangdong, 510006, China

2. 

Department of Mathematics, Shaoyang University, Shaoyang, Hunan, 422000, China

* Corresponding author: Jianshe Yu

Received  July 2019 Revised  October 2019 Published  March 2020

Fund Project: Research are supported by the National Natural Science Foundation of China (Grant No. 11901126), the Hunan Province Natural Science Foundation of China (Grant No. 2017JJ3222), and the China Postdoctoral Science Foundation funded project (Grant No. 2018M643039)

This work concerns with the existence and multiplicity of positive solutions for the following quasilinear Schrödinger equation
$ -\Delta u+V(x)u-\Delta(u^2)u = a(\epsilon x)g(u), \; \; \; \; x\in\mathbb R^N, $
where
$ V(x)>0 $
,
$ u>0 $
,
$ a $
and
$ g $
are continuous functions and
$ a $
has
$ m $
maximum points. With the change of variables we show that this equation has at least
$ m $
nontrivial solutions by using variational methods, the Ekeland's variational principle, and some properties of the Nehari manifold. Some recent results are improved.
Citation: Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020281
References:
[1]

C. O. AlvesG. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44 (2014), 435-456.  doi: 10.12775/TMNA.2014.055.  Google Scholar

[2]

C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $\mathbb R^N$, J. Differential Equations, 246 (2009), 1288-1311.  doi: 10.1016/j.jde.2008.08.004.  Google Scholar

[3]

C. O. Alves and C. Torres Ledesma, Existence and multiplicity of solutions for a non-linear Schrödinger equation with non-local regional diffusion, J. Math. Phys., 58 (2017), 111507, 19pp. doi: 10.1063/1.5011724.  Google Scholar

[4]

A. Borovskiik and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1983), 562-573.   Google Scholar

[5]

H. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.   Google Scholar

[6]

J. M. Bezerra do ÓO. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[7]

K. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[8]

D. CassaniJ. M. Bezerra do Ó and A. Moameni, Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 9 (2010), 281-306.  doi: 10.3934/cpaa.2010.9.281.  Google Scholar

[9]

D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb R^N$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.  Google Scholar

[10]

D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 443-463.  doi: 10.1017/S0308210500022836.  Google Scholar

[11]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb R^N$ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differential Equations, 265 (2018), 1962-1983.  doi: 10.1016/j.jde.2018.04.030.  Google Scholar

[14]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.  Google Scholar

[15]

E. Gloss, Existence and concentration of positive solution for a quasilinear equation in $\mathbb R^N$, J. Math. Anal. Appl., 371 (2010), 465-484.  doi: 10.1016/j.jmaa.2010.05.033.  Google Scholar

[16]

X. HeA. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.  doi: 10.1088/0951-7715/26/12/3137.  Google Scholar

[17]

T. S. HsuH. L. Lin and C. C. Hu, Multiple positive solutions of quasilinear elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 388 (2012), 500-512.  doi: 10.1016/j.jmaa.2011.11.010.  Google Scholar

[18]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3801-3805.  doi: 10.1143/JPSJ.50.3801.  Google Scholar

[19]

J. Q. LiuY. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equation, II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[20]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations, I. Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[21]

J. LiuS. Chen and X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 395 (2012), 608-615.  doi: 10.1016/j.jmaa.2012.05.063.  Google Scholar

[22]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[23]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[25]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[26]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$, Commun. Pure Appl. Anal., 7 (2008), 89-105.  doi: 10.3934/cpaa.2008.7.89.  Google Scholar

[27]

K. Mahiout and C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var. Elliptic Equ., 62 (2016), 767-785.  doi: 10.1080/17476933.2016.1243669.  Google Scholar

[28]

O. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations that include supercritical exponents with nonlinearities that are indefinite in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.  Google Scholar

[29]

Y. Miyamoto and Y. Naito, Singular extremal solutions for supercritical elliptic equations in a ball, J. Differential Equations, 265 (2018), 2842-2885.  doi: 10.1016/j.jde.2018.04.055.  Google Scholar

[30]

Q. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations involving supercritical exponent with nonlinearities indefinitie in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.  Google Scholar

[31]

M. PoppenberyK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[32]

M. D. Pina and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[33]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.  Google Scholar

[34]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949.  doi: 10.1016/j.na.2009.11.037.  Google Scholar

[35]

W. WangX. Yang and F. K. Zhao, Existence and concentration of ground states to a quasilinear problem with competing potentials, Nonlinear Anal., 102 (2014), 120-132.  doi: 10.1016/j.na.2014.01.025.  Google Scholar

[36]

Y. J. WangY. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comput., 216 (2010), 849-856.  doi: 10.1016/j.amc.2010.01.091.  Google Scholar

[37]

M. Willem, Minimax Theorems, Birkhauser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[38]

X. Wu and K. Wu, Existence of positive solutions, negative solutions and high energy solutions for quasilinear elliptic equations on $\mathbb R^N$, Nonlinear Anal. Real World Appl., 16 (2014), 48-64.   Google Scholar

[39]

J. ZhangX. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.  Google Scholar

show all references

References:
[1]

C. O. AlvesG. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44 (2014), 435-456.  doi: 10.12775/TMNA.2014.055.  Google Scholar

[2]

C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of positive solutions for a class of quasilinear problems with critical exponential growth in $\mathbb R^N$, J. Differential Equations, 246 (2009), 1288-1311.  doi: 10.1016/j.jde.2008.08.004.  Google Scholar

[3]

C. O. Alves and C. Torres Ledesma, Existence and multiplicity of solutions for a non-linear Schrödinger equation with non-local regional diffusion, J. Math. Phys., 58 (2017), 111507, 19pp. doi: 10.1063/1.5011724.  Google Scholar

[4]

A. Borovskiik and A. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1983), 562-573.   Google Scholar

[5]

H. BrandiC. ManusG. MainfrayT. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.   Google Scholar

[6]

J. M. Bezerra do ÓO. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[7]

K. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[8]

D. CassaniJ. M. Bezerra do Ó and A. Moameni, Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations, Commun. Pure Appl. Anal., 9 (2010), 281-306.  doi: 10.3934/cpaa.2010.9.281.  Google Scholar

[9]

D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb R^N$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.  Google Scholar

[10]

D. M. Cao and H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbb R^N$, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 443-463.  doi: 10.1017/S0308210500022836.  Google Scholar

[11]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb R^N$ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

F. EspositoA. Farina and B. Sciunzi, Qualitative properties of singular solutions to semilinear elliptic problems, J. Differential Equations, 265 (2018), 1962-1983.  doi: 10.1016/j.jde.2018.04.030.  Google Scholar

[14]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.  Google Scholar

[15]

E. Gloss, Existence and concentration of positive solution for a quasilinear equation in $\mathbb R^N$, J. Math. Anal. Appl., 371 (2010), 465-484.  doi: 10.1016/j.jmaa.2010.05.033.  Google Scholar

[16]

X. HeA. Qian and W. Zou, Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth, Nonlinearity, 26 (2013), 3137-3168.  doi: 10.1088/0951-7715/26/12/3137.  Google Scholar

[17]

T. S. HsuH. L. Lin and C. C. Hu, Multiple positive solutions of quasilinear elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 388 (2012), 500-512.  doi: 10.1016/j.jmaa.2011.11.010.  Google Scholar

[18]

S. Kurihura, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3801-3805.  doi: 10.1143/JPSJ.50.3801.  Google Scholar

[19]

J. Q. LiuY. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equation, II, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[20]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations, I. Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[21]

J. LiuS. Chen and X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbb R^N$, J. Math. Anal. Appl., 395 (2012), 608-615.  doi: 10.1016/j.jmaa.2012.05.063.  Google Scholar

[22]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[23]

X. Q. LiuJ. Q. Liu and Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[24]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[25]

V. G. Makhankov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep., 104 (1984), 1-86.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[26]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$, Commun. Pure Appl. Anal., 7 (2008), 89-105.  doi: 10.3934/cpaa.2008.7.89.  Google Scholar

[27]

K. Mahiout and C. O. Alves, Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces, Complex Var. Elliptic Equ., 62 (2016), 767-785.  doi: 10.1080/17476933.2016.1243669.  Google Scholar

[28]

O. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations that include supercritical exponents with nonlinearities that are indefinite in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.  Google Scholar

[29]

Y. Miyamoto and Y. Naito, Singular extremal solutions for supercritical elliptic equations in a ball, J. Differential Equations, 265 (2018), 2842-2885.  doi: 10.1016/j.jde.2018.04.055.  Google Scholar

[30]

Q. H. Miyagaki and S. I. Moreira, Nonnegative solution for quasilinear Schrödinger equations involving supercritical exponent with nonlinearities indefinitie in sign, J. Math. Anal. Appl., 421 (2015), 643-655.  doi: 10.1016/j.jmaa.2014.06.074.  Google Scholar

[31]

M. PoppenberyK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[32]

M. D. Pina and P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.  doi: 10.1007/BF01189950.  Google Scholar

[33]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.  Google Scholar

[34]

E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935-2949.  doi: 10.1016/j.na.2009.11.037.  Google Scholar

[35]

W. WangX. Yang and F. K. Zhao, Existence and concentration of ground states to a quasilinear problem with competing potentials, Nonlinear Anal., 102 (2014), 120-132.  doi: 10.1016/j.na.2014.01.025.  Google Scholar

[36]

Y. J. WangY. M. Zhang and Y. T. Shen, Multiple solutions for quasilinear Schrödinger equations involving critical exponent, Appl. Math. Comput., 216 (2010), 849-856.  doi: 10.1016/j.amc.2010.01.091.  Google Scholar

[37]

M. Willem, Minimax Theorems, Birkhauser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[38]

X. Wu and K. Wu, Existence of positive solutions, negative solutions and high energy solutions for quasilinear elliptic equations on $\mathbb R^N$, Nonlinear Anal. Real World Appl., 16 (2014), 48-64.   Google Scholar

[39]

J. ZhangX. Tang and W. Zhang, Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential, J. Math. Anal. Appl., 420 (2014), 1762-1775.  doi: 10.1016/j.jmaa.2014.06.055.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[4]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[5]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[8]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[9]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[10]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[11]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[12]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[13]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[17]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[18]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[19]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[20]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (122)
  • HTML views (439)
  • Cited by (0)

Other articles
by authors

[Back to Top]