• Previous Article
    Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator
  • DCDS-S Home
  • This Issue
  • Next Article
    Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
doi: 10.3934/dcdss.2020295

A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation

1. 

Faculty of Mathematics, Yazd University, Yazd, 89195-741, Iran

2. 

Department of Mathematics, Shiraz University of Technology, Shiraz, 71555-313, Iran

3. 

Engineering School (DEIM), University of Tuscia, Viterbo, 01100, Italy

* Corresponding author: Carlo Cattani

Received  May 2019 Revised  June 2019 Published  June 2020

In this study, an efficient semi-discrete method based on the two-dimensional Legendre wavelets (2D LWs) is developed to provide approximate solutions for nonlinear variable-order time fractional two-dimensional (2D) Schrödinger equation. First, the variable-order time fractional derivative involved in the considered problem is approximated via the finite difference technique. Then, by help of the finite difference scheme and the theta-weighted method, a recursive algorithm is derived for the problem under examination. After that, the real functions available in the real and imaginary parts of the unknown solution of the problem are expanded via the 2D LWs. Finally, by applying the operational matrices of derivative, the solution of the problem is transformed to the solution of a linear system of algebraic equations in each time step which can simply be solved. In the proposed method, acceptable approximate solutions are achieved by employing only a small number of the basis functions. To illustrate the applicability, validity and accuracy of the wavelet method, some numerical test examples are solved using the suggested method. The achieved numerical results reveal that the method established based on the 2D LWs is very easy to implement, appropriate and accurate in solving the proposed model.

Citation: Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020295
References:
[1]

M. A. AbdelkawyM. A. ZakyA. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Romanian Reports in Physics, 67 (2015), 773-791.   Google Scholar

[2]

E. A.-B. Abdel-Salama, E. A. Yousif and M. A. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Physics, 2017. Google Scholar

[3]

L. AcedoS. B. Yuste and K. Lindenberg, Reaction front in an $a+b\rightarrow c$ reaction-subdiffusion process, Phys. Rev. E, 69 (2004), 136-144.   Google Scholar

[4]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), Article ID 38298, 7 pages. doi: 10.1155/1998/38298.  Google Scholar

[5]

A. Atangana and J. F. Gómez–Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos, Solitons and Fractals, 114 (2018), 516-535.  doi: 10.1016/j.chaos.2018.07.033.  Google Scholar

[6]

A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.  doi: 10.1002/num.22195.  Google Scholar

[7]

T. Bakkyaraj and R. Sahadevan, Approximate analytical solution of two coupled time fractional nonlinear schrödinger equations, Int. J. Appl. Comput. Math, 2 (2016), 113-135.  doi: 10.1007/s40819-015-0049-3.  Google Scholar

[8]

E. BarkaiR. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.  doi: 10.1103/PhysRevE.61.132.  Google Scholar

[9]

D.A. BensonS. W. Wheatcraft and M. M. Meerschaert, The fractional-order governing equation of lévy motion, Water Resources Research, 36 (2000), 1413-1423.  doi: 10.1029/2000WR900032.  Google Scholar

[10]

A. H. Bhrawya and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294 (2015), 462-483.  doi: 10.1016/j.jcp.2015.03.063.  Google Scholar

[11]

A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85 (2016), 1815-1823.  doi: 10.1007/s11071-016-2797-y.  Google Scholar

[12]

A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101-116.  doi: 10.1007/s11071-014-1854-7.  Google Scholar

[13]

C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1998. Google Scholar

[14]

Y. ChenL. LiuB. Li and Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329-341.  doi: 10.1016/j.amc.2014.03.066.  Google Scholar

[15]

C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys, 12 (2003), 692-703.  doi: 10.1002/andp.200310032.  Google Scholar

[16]

M. Dehghan and A. Shokri, A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. Math. Appl., 54 (2007), 136-146.  doi: 10.1016/j.camwa.2007.01.038.  Google Scholar

[17] R. K. DoddJ. C. EilbeckJ. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982.   Google Scholar
[18]

E. H. DohaA. H. BhrawyM. A. Abdelkawy and RobertA. Van Gorder, Jacobi–Gauss–Lobatto collocation method for the numerical solution of $1+1$ nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244-255.  doi: 10.1016/j.jcp.2014.01.003.  Google Scholar

[19]

M. D. FeitJ. A. Fleck Jr. and A. Steiger, Solution of the Schrödinger equation by a spectral method, Computational Physics, 47 (1982), 412-433.  doi: 10.1016/0021-9991(82)90091-2.  Google Scholar

[20]

Z. Gao and S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.  doi: 10.1016/j.apnum.2010.12.004.  Google Scholar

[21]

J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 1-13.  doi: 10.1140/epjp/i2017-11293-3.  Google Scholar

[22]

J. F. Gómez-Aguilar, H. Yépez–Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ., 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.  Google Scholar

[23]

S. H. M. Hamed, E. A. Yousif and A. I. Arbab, Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Art. ID 863015, 13pp. doi: 10.1155/2014/863015.  Google Scholar

[24]

A. Hasegawa, Optical Solitons in Fibers, Berlin: Springer-Verlag, 1993. doi: 10.1117/12.2308783.  Google Scholar

[25]

M. A. E. Herzallah and K. A. Gepreel, Approximate solution to the time–space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36 (2012), 5678-5685.  doi: 10.1016/j.apm.2012.01.012.  Google Scholar

[26]

M. H. Heydari, Wavelets Galerkin method for the fractional subdiffusion equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061014, 7pp. doi: 10.1115/1.4034391.  Google Scholar

[27]

M. H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355 (2018), 4970-4995.  doi: 10.1016/j.jfranklin.2018.05.025.  Google Scholar

[28]

M. H. Heydari and Z. Avazzadeh, Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons and Fractals, 112 (2018), 180-190.  doi: 10.1016/j.chaos.2018.04.028.  Google Scholar

[29]

M. H. Heydari and Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37 (2018), 4397-4411.  doi: 10.1007/s40314-018-0580-z.  Google Scholar

[30]

M. H. Heydari and Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20 (2018), 1804-1817.  doi: 10.1002/asjc.1687.  Google Scholar

[31]

M. H. HeydariZ. Avazzadeh and M. Farzi Haromi, A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215-228.  doi: 10.1016/j.amc.2018.08.034.  Google Scholar

[32]

M. H. HeydariM. R. HooshmandaslC. Cattani and G. Hariharan, An optimization wavelet method for multi variable-order fractional differential equations, Fund. Inform., 151 (2017), 255-273.  doi: 10.3233/FI-2017-1491.  Google Scholar

[33]

M. H. HeydariM. R. HooshmandaslF. M. Maalek Ghaini and C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379 (2015), 71-76.  doi: 10.1016/j.physleta.2014.11.012.  Google Scholar

[34]

M. H. HeydariM. R. HooshmandaslF. M. Maalek Ghaini and C. Cattani, Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286 (2016), 139-154.  doi: 10.1016/j.amc.2016.04.009.  Google Scholar

[35]

M. H. HeydariM. R. HooshmandaslF. M. Maalek Ghaini and F. Feriedouni, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37 (2013), 1331-1338.  doi: 10.1016/j.enganabound.2013.07.002.  Google Scholar

[36]

M. H. HeydariM. R. Hooshmandasl and F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234 (2014), 267-276.  doi: 10.1016/j.amc.2014.02.047.  Google Scholar

[37]

M. H. HeydariM. R. Hooshmandasl and F. Mohammadi, Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech., 6 (2014), 247-260.  doi: 10.4208/aamm.12-m12132.  Google Scholar

[38]

M. HosseininiaM. H. HeydariR. Roohi and Z. Avazzadeh, A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 1-18.  doi: 10.1016/j.jcp.2019.06.024.  Google Scholar

[39]

M. HosseininiaM. H. HeydariZ. Avazzadeh and F. M. Maalek Ghaini, Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793-802.  doi: 10.1515/ijnsns-2018-0168.  Google Scholar

[40]

M. HosseininiaM. H. HeydariF. M. Maalek Ghaini and Z. Avazzadeh, A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730.  doi: 10.1016/j.camwa.2019.06.008.  Google Scholar

[41]

J. HuJ. Xin and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.  doi: 10.1016/j.camwa.2011.05.039.  Google Scholar

[42]

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45. Institution of Electrical Engineers (IEE), London, 2000. doi: 10.1049/PBEW045E.  Google Scholar

[43]

X. Li and B. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113.  doi: 10.1016/j.aml.2014.12.012.  Google Scholar

[44]

J. LinY. HongL.-H. Kuo and C.-S. Liu, Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions, Eng. Anal. Bound. Elem., 78 (2017), 20-25.  doi: 10.1016/j.enganabound.2017.02.002.  Google Scholar

[45]

R. LinF. LiuV. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.  doi: 10.1016/j.amc.2009.02.047.  Google Scholar

[46]

F. LiuV. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209-219.  doi: 10.1016/j.cam.2003.09.028.  Google Scholar

[47]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.  doi: 10.1016/S0378-4371(99)00503-8.  Google Scholar

[48]

B. P. MoghaddamJ. A. T. Machado and H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354-360.  doi: 10.1016/j.chaos.2017.03.065.  Google Scholar

[49]

A. Mohebbi and M. Dehghan, The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225 (2009), 124-134.  doi: 10.1016/j.cam.2008.07.008.  Google Scholar

[50]

B. Parsa Moghaddam and J. A. T. Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71 (2017), 1351-1374.  doi: 10.1007/s10915-016-0343-1.  Google Scholar

[51]

L. E. S. Ramirez and C. F. M. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240 (2011), 1111-1118.  doi: 10.1016/j.physd.2011.04.001.  Google Scholar

[52]

K. M. Saad, M. M. Khader, J. F. Gómez–Aguilar and D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116, 9pp. doi: 10.1063/1.5086771.  Google Scholar

[53]

A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications., Chaos, 7 (1997), 753. doi: 10.1063/1.166272.  Google Scholar

[54]

S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213-236.   Google Scholar

[55]

S. Samko, Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71 (2013), 653-662.  doi: 10.1007/s11071-012-0485-0.  Google Scholar

[56]

S. G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transform Spec. Funct., 1 (1993), 277-300.  doi: 10.1080/10652469308819027.  Google Scholar

[57]

E. ScalasR. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A, 284 (2000), 376-384.  doi: 10.1016/S0378-4371(00)00255-7.  Google Scholar

[58] A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999.   Google Scholar
[59]

S. ShenF. LiuJ. ChenI. Turner and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861-10870.  doi: 10.1016/j.amc.2012.04.047.  Google Scholar

[60]

E. Shivanian and A. Jafarabadi, An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis, Eng. Anal. Bound. Elem., 83 (2017), 74-86.  doi: 10.1016/j.enganabound.2017.07.012.  Google Scholar

[61]

J.-J. ShyuS.-C. Pei and C.-H. Chan, An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89 (2009), 320-327.  doi: 10.1016/j.sigpro.2008.09.009.  Google Scholar

[62]

H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), Article number: 185. doi: 10.1140/epjst/e2011-01390-6.  Google Scholar

[63]

F. D. Tappert, The parabolic approximation method, Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Physics, Springer, Berlin, 70 (1977), 224–287.  Google Scholar

[64]

A. TayebiY. Shekari and M. H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340 (2017), 655-669.  doi: 10.1016/j.jcp.2017.03.061.  Google Scholar

[65] K. Y and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003.   Google Scholar
[66]

S. YaghoobiB. P. Moghaddam and K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynam., 87 (2017), 815-826.  doi: 10.1007/s11071-016-3079-4.  Google Scholar

[67]

H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 17pp. doi: 10.1051/mmnp/2018002.  Google Scholar

[68]

F. YinJ. Song and F. Lu, A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 37 (2014), 781-792.  doi: 10.1002/mma.2834.  Google Scholar

[69]

S. B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett, 87 (2001), 118301. doi: 10.1103/PhysRevLett.87.118301.  Google Scholar

[70]

M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312-338.  doi: 10.1016/j.jcp.2014.12.001.  Google Scholar

show all references

References:
[1]

M. A. AbdelkawyM. A. ZakyA. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Romanian Reports in Physics, 67 (2015), 773-791.   Google Scholar

[2]

E. A.-B. Abdel-Salama, E. A. Yousif and M. A. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Physics, 2017. Google Scholar

[3]

L. AcedoS. B. Yuste and K. Lindenberg, Reaction front in an $a+b\rightarrow c$ reaction-subdiffusion process, Phys. Rev. E, 69 (2004), 136-144.   Google Scholar

[4]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), Article ID 38298, 7 pages. doi: 10.1155/1998/38298.  Google Scholar

[5]

A. Atangana and J. F. Gómez–Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos, Solitons and Fractals, 114 (2018), 516-535.  doi: 10.1016/j.chaos.2018.07.033.  Google Scholar

[6]

A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.  doi: 10.1002/num.22195.  Google Scholar

[7]

T. Bakkyaraj and R. Sahadevan, Approximate analytical solution of two coupled time fractional nonlinear schrödinger equations, Int. J. Appl. Comput. Math, 2 (2016), 113-135.  doi: 10.1007/s40819-015-0049-3.  Google Scholar

[8]

E. BarkaiR. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.  doi: 10.1103/PhysRevE.61.132.  Google Scholar

[9]

D.A. BensonS. W. Wheatcraft and M. M. Meerschaert, The fractional-order governing equation of lévy motion, Water Resources Research, 36 (2000), 1413-1423.  doi: 10.1029/2000WR900032.  Google Scholar

[10]

A. H. Bhrawya and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294 (2015), 462-483.  doi: 10.1016/j.jcp.2015.03.063.  Google Scholar

[11]

A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85 (2016), 1815-1823.  doi: 10.1007/s11071-016-2797-y.  Google Scholar

[12]

A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101-116.  doi: 10.1007/s11071-014-1854-7.  Google Scholar

[13]

C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1998. Google Scholar

[14]

Y. ChenL. LiuB. Li and Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329-341.  doi: 10.1016/j.amc.2014.03.066.  Google Scholar

[15]

C. F. M. Coimbra, Mechanics with variable-order differential operators, Ann. Phys, 12 (2003), 692-703.  doi: 10.1002/andp.200310032.  Google Scholar

[16]

M. Dehghan and A. Shokri, A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. Math. Appl., 54 (2007), 136-146.  doi: 10.1016/j.camwa.2007.01.038.  Google Scholar

[17] R. K. DoddJ. C. EilbeckJ. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982.   Google Scholar
[18]

E. H. DohaA. H. BhrawyM. A. Abdelkawy and RobertA. Van Gorder, Jacobi–Gauss–Lobatto collocation method for the numerical solution of $1+1$ nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244-255.  doi: 10.1016/j.jcp.2014.01.003.  Google Scholar

[19]

M. D. FeitJ. A. Fleck Jr. and A. Steiger, Solution of the Schrödinger equation by a spectral method, Computational Physics, 47 (1982), 412-433.  doi: 10.1016/0021-9991(82)90091-2.  Google Scholar

[20]

Z. Gao and S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.  doi: 10.1016/j.apnum.2010.12.004.  Google Scholar

[21]

J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 1-13.  doi: 10.1140/epjp/i2017-11293-3.  Google Scholar

[22]

J. F. Gómez-Aguilar, H. Yépez–Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ., 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.  Google Scholar

[23]

S. H. M. Hamed, E. A. Yousif and A. I. Arbab, Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Art. ID 863015, 13pp. doi: 10.1155/2014/863015.  Google Scholar

[24]

A. Hasegawa, Optical Solitons in Fibers, Berlin: Springer-Verlag, 1993. doi: 10.1117/12.2308783.  Google Scholar

[25]

M. A. E. Herzallah and K. A. Gepreel, Approximate solution to the time–space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36 (2012), 5678-5685.  doi: 10.1016/j.apm.2012.01.012.  Google Scholar

[26]

M. H. Heydari, Wavelets Galerkin method for the fractional subdiffusion equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061014, 7pp. doi: 10.1115/1.4034391.  Google Scholar

[27]

M. H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355 (2018), 4970-4995.  doi: 10.1016/j.jfranklin.2018.05.025.  Google Scholar

[28]

M. H. Heydari and Z. Avazzadeh, Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons and Fractals, 112 (2018), 180-190.  doi: 10.1016/j.chaos.2018.04.028.  Google Scholar

[29]

M. H. Heydari and Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37 (2018), 4397-4411.  doi: 10.1007/s40314-018-0580-z.  Google Scholar

[30]

M. H. Heydari and Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20 (2018), 1804-1817.  doi: 10.1002/asjc.1687.  Google Scholar

[31]

M. H. HeydariZ. Avazzadeh and M. Farzi Haromi, A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215-228.  doi: 10.1016/j.amc.2018.08.034.  Google Scholar

[32]

M. H. HeydariM. R. HooshmandaslC. Cattani and G. Hariharan, An optimization wavelet method for multi variable-order fractional differential equations, Fund. Inform., 151 (2017), 255-273.  doi: 10.3233/FI-2017-1491.  Google Scholar

[33]

M. H. HeydariM. R. HooshmandaslF. M. Maalek Ghaini and C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379 (2015), 71-76.  doi: 10.1016/j.physleta.2014.11.012.  Google Scholar

[34]

M. H. HeydariM. R. HooshmandaslF. M. Maalek Ghaini and C. Cattani, Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286 (2016), 139-154.  doi: 10.1016/j.amc.2016.04.009.  Google Scholar

[35]

M. H. HeydariM. R. HooshmandaslF. M. Maalek Ghaini and F. Feriedouni, Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37 (2013), 1331-1338.  doi: 10.1016/j.enganabound.2013.07.002.  Google Scholar

[36]

M. H. HeydariM. R. Hooshmandasl and F. Mohammadi, Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234 (2014), 267-276.  doi: 10.1016/j.amc.2014.02.047.  Google Scholar

[37]

M. H. HeydariM. R. Hooshmandasl and F. Mohammadi, Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech., 6 (2014), 247-260.  doi: 10.4208/aamm.12-m12132.  Google Scholar

[38]

M. HosseininiaM. H. HeydariR. Roohi and Z. Avazzadeh, A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 1-18.  doi: 10.1016/j.jcp.2019.06.024.  Google Scholar

[39]

M. HosseininiaM. H. HeydariZ. Avazzadeh and F. M. Maalek Ghaini, Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793-802.  doi: 10.1515/ijnsns-2018-0168.  Google Scholar

[40]

M. HosseininiaM. H. HeydariF. M. Maalek Ghaini and Z. Avazzadeh, A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730.  doi: 10.1016/j.camwa.2019.06.008.  Google Scholar

[41]

J. HuJ. Xin and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.  doi: 10.1016/j.camwa.2011.05.039.  Google Scholar

[42]

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45. Institution of Electrical Engineers (IEE), London, 2000. doi: 10.1049/PBEW045E.  Google Scholar

[43]

X. Li and B. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113.  doi: 10.1016/j.aml.2014.12.012.  Google Scholar

[44]

J. LinY. HongL.-H. Kuo and C.-S. Liu, Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions, Eng. Anal. Bound. Elem., 78 (2017), 20-25.  doi: 10.1016/j.enganabound.2017.02.002.  Google Scholar

[45]

R. LinF. LiuV. Anh and I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.  doi: 10.1016/j.amc.2009.02.047.  Google Scholar

[46]

F. LiuV. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209-219.  doi: 10.1016/j.cam.2003.09.028.  Google Scholar

[47]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.  doi: 10.1016/S0378-4371(99)00503-8.  Google Scholar

[48]

B. P. MoghaddamJ. A. T. Machado and H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354-360.  doi: 10.1016/j.chaos.2017.03.065.  Google Scholar

[49]

A. Mohebbi and M. Dehghan, The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225 (2009), 124-134.  doi: 10.1016/j.cam.2008.07.008.  Google Scholar

[50]

B. Parsa Moghaddam and J. A. T. Machado, Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71 (2017), 1351-1374.  doi: 10.1007/s10915-016-0343-1.  Google Scholar

[51]

L. E. S. Ramirez and C. F. M. Coimbra, On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240 (2011), 1111-1118.  doi: 10.1016/j.physd.2011.04.001.  Google Scholar

[52]

K. M. Saad, M. M. Khader, J. F. Gómez–Aguilar and D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116, 9pp. doi: 10.1063/1.5086771.  Google Scholar

[53]

A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications., Chaos, 7 (1997), 753. doi: 10.1063/1.166272.  Google Scholar

[54]

S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213-236.   Google Scholar

[55]

S. Samko, Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71 (2013), 653-662.  doi: 10.1007/s11071-012-0485-0.  Google Scholar

[56]

S. G. Samko and B. Ross, Integration and differentiation to a variable fractional order, Integral Transform Spec. Funct., 1 (1993), 277-300.  doi: 10.1080/10652469308819027.  Google Scholar

[57]

E. ScalasR. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A, 284 (2000), 376-384.  doi: 10.1016/S0378-4371(00)00255-7.  Google Scholar

[58] A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999.   Google Scholar
[59]

S. ShenF. LiuJ. ChenI. Turner and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861-10870.  doi: 10.1016/j.amc.2012.04.047.  Google Scholar

[60]

E. Shivanian and A. Jafarabadi, An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis, Eng. Anal. Bound. Elem., 83 (2017), 74-86.  doi: 10.1016/j.enganabound.2017.07.012.  Google Scholar

[61]

J.-J. ShyuS.-C. Pei and C.-H. Chan, An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89 (2009), 320-327.  doi: 10.1016/j.sigpro.2008.09.009.  Google Scholar

[62]

H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), Article number: 185. doi: 10.1140/epjst/e2011-01390-6.  Google Scholar

[63]

F. D. Tappert, The parabolic approximation method, Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Physics, Springer, Berlin, 70 (1977), 224–287.  Google Scholar

[64]

A. TayebiY. Shekari and M. H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340 (2017), 655-669.  doi: 10.1016/j.jcp.2017.03.061.  Google Scholar

[65] K. Y and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003.   Google Scholar
[66]

S. YaghoobiB. P. Moghaddam and K. Ivaz, An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynam., 87 (2017), 815-826.  doi: 10.1007/s11071-016-3079-4.  Google Scholar

[67]

H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 17pp. doi: 10.1051/mmnp/2018002.  Google Scholar

[68]

F. YinJ. Song and F. Lu, A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 37 (2014), 781-792.  doi: 10.1002/mma.2834.  Google Scholar

[69]

S. B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett, 87 (2001), 118301. doi: 10.1103/PhysRevLett.87.118301.  Google Scholar

[70]

M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312-338.  doi: 10.1016/j.jcp.2014.12.001.  Google Scholar

Figure 1.  Behavior of the real part of the wavelet solutions in the spaces $ (0.2, y) $ (up) and $ (x, 0.4) $ (down) at $ t = 1 $ for some selections $ \alpha(\mathbf{x}, t) $
Figure 2.  The behavior of the real part of the wavelet solutions in the spaces $ (0.2, y) $ (up) and $ (x, 0.4) $ (down) at $ t = 1 $ for some selections $ \alpha(\mathbf{x}, t) $
Figure 3.  Modulus of the wavelet solutions in the spaces $ (0.2, y) $ (up) and $ (x, 0.4) $ (down) at $ t = 1 $ for some selections $ \alpha(\mathbf{x}, t) $
Figure 4.  The behavior of the real part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.0025 $
Figure 5.  The behavior of the imaginary part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.0025 $
Figure 6.  The behavior of the modulus part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.0025 $
Figure 7.  The behavior of the real part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.01 $
Figure 8.  The behavior of the imaginary part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.01 $
Figure 9.  The behavior of the modulus part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.01 $
Figure 10.  The behavior of the real part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.005 $
Figure 11.  The behavior of the imaginary part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.005 $
Figure 12.  The behavior of the modulus part of the wavelet solution and the corresponding AE function (up and down, respectively) at the final time where $ \delta = 0.005 $
Table 1.  The obtained error values by the presented wavelet method in case of $ \alpha(\mathbf{x}, t) = 1 $ with three values of $ \delta t $
$ \delta t=0.1 $ $ \delta t=0.01 $ $ \delta t=0.005 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.1 1.0972E-4 2.7299E-4 2.9405E-4 5.4640E-5 1.3650E-4 5.6319E-4 2.7320E-5 6.8250E-5 7.3515E-5
0.3 1.4037E-4 2.9682E-4 3.2834E-4 7.0180E-5 1.4841E-4 7.1732E-4 3.5090E-5 7.4200E-5 8.2779E-5
0.5 7.2400E-4 1.2708E-3 1.5000E-3 3.6200E-4 6.3540E-4 7.3128E-4 1.8100E-4 3.1770E-4 3.6564E-4
0.7 2.1281E-4 3.2733E-3 3.3000E-3 1.0640E-4 1.6367E-3 1.600E-4 5.3200E-5 8.1835E-4 9.7607E-4
0.9 1.5228E-3 1.0266E-3 1.8000E-3 7.6140E-4 5.1130E-4 9.1715E-4 3.8070E-4 2.5565E-4 4.5857E-4
1.0 8.3072E-4 1.0078E-3 1.3000E-3 4.1536E-4 5.0390E-4 6.5302E-4 2.0768E-4 2.5159E-4 3.2651E-4
$ \delta t=0.1 $ $ \delta t=0.01 $ $ \delta t=0.005 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.1 1.0972E-4 2.7299E-4 2.9405E-4 5.4640E-5 1.3650E-4 5.6319E-4 2.7320E-5 6.8250E-5 7.3515E-5
0.3 1.4037E-4 2.9682E-4 3.2834E-4 7.0180E-5 1.4841E-4 7.1732E-4 3.5090E-5 7.4200E-5 8.2779E-5
0.5 7.2400E-4 1.2708E-3 1.5000E-3 3.6200E-4 6.3540E-4 7.3128E-4 1.8100E-4 3.1770E-4 3.6564E-4
0.7 2.1281E-4 3.2733E-3 3.3000E-3 1.0640E-4 1.6367E-3 1.600E-4 5.3200E-5 8.1835E-4 9.7607E-4
0.9 1.5228E-3 1.0266E-3 1.8000E-3 7.6140E-4 5.1130E-4 9.1715E-4 3.8070E-4 2.5565E-4 4.5857E-4
1.0 8.3072E-4 1.0078E-3 1.3000E-3 4.1536E-4 5.0390E-4 6.5302E-4 2.0768E-4 2.5159E-4 3.2651E-4
Table 2.  The obtained error values by the presented wavelet method with three different values of $ \delta t $
$ \delta t=0.01 $ $ \delta t=0.005 $ $ \delta t=0.0025 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.1 2.9620E-5 1.0970E-4 1.1363E-4 1.4703E-5 5.4867E-5 5.6803E-5 7.3241E-6 2.7443E-5 2.8404E-5
0.3 8.8820E-5 3.2366E-4 3.3563E-4 4.4328E-5 1.6168E-4 1.6765E-4 2.2127E-5 8.0924E-5 8.3895E-5
0.5 1.3329E-4 4.7940E-4 4.9758E-4 6.6425E-5 2.3966E-4 2.4869E-4 3.3150E-5 1.1985E-4 1.2435E-4
0.7 1.1238E-4 3.9372E-4 4.0944E-4 5.5570E-5 1.9680E-4 2.0450E-4 2.7615E-5 9.8391E-5 1.0219E-4
0.9 9.3184E-5 3.9345E-4 4.0433E-4 4.8381E-5 1.9775E-4 2.0358E-4 2.4638E-5 9.9143E-5 1.0216E-4
1.0 3.3547E-4 1.3286E-3 1.4000E-3 1.7082E-4 6.6725E-4 6.8877E-4 8.6191E-5 3.3438E-4 3.4531E-4
$ \delta t=0.01 $ $ \delta t=0.005 $ $ \delta t=0.0025 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.1 2.9620E-5 1.0970E-4 1.1363E-4 1.4703E-5 5.4867E-5 5.6803E-5 7.3241E-6 2.7443E-5 2.8404E-5
0.3 8.8820E-5 3.2366E-4 3.3563E-4 4.4328E-5 1.6168E-4 1.6765E-4 2.2127E-5 8.0924E-5 8.3895E-5
0.5 1.3329E-4 4.7940E-4 4.9758E-4 6.6425E-5 2.3966E-4 2.4869E-4 3.3150E-5 1.1985E-4 1.2435E-4
0.7 1.1238E-4 3.9372E-4 4.0944E-4 5.5570E-5 1.9680E-4 2.0450E-4 2.7615E-5 9.8391E-5 1.0219E-4
0.9 9.3184E-5 3.9345E-4 4.0433E-4 4.8381E-5 1.9775E-4 2.0358E-4 2.4638E-5 9.9143E-5 1.0216E-4
1.0 3.3547E-4 1.3286E-3 1.4000E-3 1.7082E-4 6.6725E-4 6.8877E-4 8.6191E-5 3.3438E-4 3.4531E-4
Table 3.  The obtained error values by the presented wavelet method with $ k = 0 $ and three different values of $ M $ with $ \delta t = 0.01 $
$ M=8 $ $ M=10 $ $ M=12 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.1 1.5350E-5 2.9309E-5 3.3085E-5 1.5040E-5 3.1348E-5 3.4769E-5 1.5840E-5 3.0785E-5 3.4621E-5
0.3 6.3197E-6 5.3790E-5 5.4160E-5 6.2715E-6 5.3587E-5 5.3953E-5 5.7390E-6 5.4213E-5 5.4516E-5
0.5 3.1960E-5 4.8457E-5 5.8084E-5 3.4046E-5 4.8869E-5 5.9559E-5 3.4143E-5 4.7114E-5 5.8185E-5
0.7 2.4709E-5 3.2107E-5 4.0514E-5 2.4347E-5 3.3151E-5 4.1131E-5 2.5224E-5 3.6278E-5 4.4185E-5
0.9 3.2024E-5 4.0227E-5 5.1417E-5 3.1606E-5 4.0445E-5 5.1330E-5 3.1359E-5 3.9262E-5 5.0248E-5
1.0 4.7832E-5 3.7982E-5 6.1078E-5 4.6654E-5 3.8333E-4 3.8616E-4 4.4804E-4 3.6276E-5 4.4951E-4
$ M=8 $ $ M=10 $ $ M=12 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.1 1.5350E-5 2.9309E-5 3.3085E-5 1.5040E-5 3.1348E-5 3.4769E-5 1.5840E-5 3.0785E-5 3.4621E-5
0.3 6.3197E-6 5.3790E-5 5.4160E-5 6.2715E-6 5.3587E-5 5.3953E-5 5.7390E-6 5.4213E-5 5.4516E-5
0.5 3.1960E-5 4.8457E-5 5.8084E-5 3.4046E-5 4.8869E-5 5.9559E-5 3.4143E-5 4.7114E-5 5.8185E-5
0.7 2.4709E-5 3.2107E-5 4.0514E-5 2.4347E-5 3.3151E-5 4.1131E-5 2.5224E-5 3.6278E-5 4.4185E-5
0.9 3.2024E-5 4.0227E-5 5.1417E-5 3.1606E-5 4.0445E-5 5.1330E-5 3.1359E-5 3.9262E-5 5.0248E-5
1.0 4.7832E-5 3.7982E-5 6.1078E-5 4.6654E-5 3.8333E-4 3.8616E-4 4.4804E-4 3.6276E-5 4.4951E-4
Table 4.  The obtained error values by the presented wavelet method with $ k = 1 $ and two different values of $ M $ with $ \delta t = 0.005 $
$ M=4 $ $ M=5 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.2 7.0513E-5 4.6682E-4 4.7212E-4 7.0460E-5 4.6155E-4 4.6690E-4
0.4 2.5190E-5 4.0126E- 4 4.0205E-4 2.4703E-5 3.9546E-4 3.9623E-4
0.6 7.0915E-5 2.8288E-4 2.9163E-4 6.5807E-5 2.8002E-4 2.8765E-4
0.8 1.5620E-4 1.6841E-4 2.2970E-4 1.5549E-4 1.6815E-4 2.2902E-4
1.0 2.4920E-4 8.7739E-5 2.6419E-4 2.5251E-4 8.8278E-5 2.6750E-4
$ M=4 $ $ M=5 $
$ t $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $ $ \varepsilon_{real} $ $ \varepsilon_{image} $ $ \left| \varepsilon\right| $
0.2 7.0513E-5 4.6682E-4 4.7212E-4 7.0460E-5 4.6155E-4 4.6690E-4
0.4 2.5190E-5 4.0126E- 4 4.0205E-4 2.4703E-5 3.9546E-4 3.9623E-4
0.6 7.0915E-5 2.8288E-4 2.9163E-4 6.5807E-5 2.8002E-4 2.8765E-4
0.8 1.5620E-4 1.6841E-4 2.2970E-4 1.5549E-4 1.6815E-4 2.2902E-4
1.0 2.4920E-4 8.7739E-5 2.6419E-4 2.5251E-4 8.8278E-5 2.6750E-4
[1]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040

[2]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[3]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[4]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[5]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[6]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[7]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[8]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[9]

Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations & Control Theory, 2020, 9 (2) : 561-579. doi: 10.3934/eect.2020024

[10]

Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659

[11]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[12]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[13]

Bo-Qing Dong, Jiahong Wu, Xiaojing Xu, Zhuan Ye. Global regularity for the 2D micropolar equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4133-4162. doi: 10.3934/dcds.2018180

[14]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[15]

Brian Ryals, Robert J. Sacker. Global stability in the 2D Ricker equation revisited. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 585-604. doi: 10.3934/dcdsb.2017028

[16]

Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025

[17]

Hong Lu, Ji Li, Mingji Zhang. Spectral methods for two-dimensional space and time fractional Bloch-Torrey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3357-3371. doi: 10.3934/dcdsb.2020065

[18]

Vladimir Angulo-Castillo, Lucas C. F. Ferreira, Leonardo Kosloff. Long-time solvability for the 2D dispersive SQG equation with improved regularity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1411-1433. doi: 10.3934/dcds.2020082

[19]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[20]

Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]