
-
Previous Article
On the fuzzy stability results for fractional stochastic Volterra integral equation
- DCDS-S Home
- This Issue
-
Next Article
Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation
1. | Faculty of Mathematics, Yazd University, Yazd, 89195-741, Iran |
2. | Department of Mathematics, Shiraz University of Technology, Shiraz, 71555-313, Iran |
3. | Engineering School (DEIM), University of Tuscia, Viterbo, 01100, Italy |
In this study, an efficient semi-discrete method based on the two-dimensional Legendre wavelets (2D LWs) is developed to provide approximate solutions for nonlinear variable-order time fractional two-dimensional (2D) Schrödinger equation. First, the variable-order time fractional derivative involved in the considered problem is approximated via the finite difference technique. Then, by help of the finite difference scheme and the theta-weighted method, a recursive algorithm is derived for the problem under examination. After that, the real functions available in the real and imaginary parts of the unknown solution of the problem are expanded via the 2D LWs. Finally, by applying the operational matrices of derivative, the solution of the problem is transformed to the solution of a linear system of algebraic equations in each time step which can simply be solved. In the proposed method, acceptable approximate solutions are achieved by employing only a small number of the basis functions. To illustrate the applicability, validity and accuracy of the wavelet method, some numerical test examples are solved using the suggested method. The achieved numerical results reveal that the method established based on the 2D LWs is very easy to implement, appropriate and accurate in solving the proposed model.
References:
[1] |
M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Romanian Reports in Physics, 67 (2015), 773-791. Google Scholar |
[2] |
E. A.-B. Abdel-Salama, E. A. Yousif and M. A. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Physics, 2017. Google Scholar |
[3] |
L. Acedo, S. B. Yuste and K. Lindenberg, Reaction front in an $a+b\rightarrow c$ reaction-subdiffusion process, Phys. Rev. E, 69 (2004), 136-144. Google Scholar |
[4] |
A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), Article ID 38298, 7 pages.
doi: 10.1155/1998/38298. |
[5] |
A. Atangana and J. F. Gómez–Aguilar,
Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos, Solitons and Fractals, 114 (2018), 516-535.
doi: 10.1016/j.chaos.2018.07.033. |
[6] |
A. Atangana and J. F. Gómez-Aguilar,
Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.
doi: 10.1002/num.22195. |
[7] |
T. Bakkyaraj and R. Sahadevan,
Approximate analytical solution of two coupled time fractional nonlinear schrödinger equations, Int. J. Appl. Comput. Math, 2 (2016), 113-135.
doi: 10.1007/s40819-015-0049-3. |
[8] |
E. Barkai, R. Metzler and J. Klafter,
From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.
doi: 10.1103/PhysRevE.61.132. |
[9] |
D.A. Benson, S. W. Wheatcraft and M. M. Meerschaert,
The fractional-order governing equation of lévy motion, Water Resources Research, 36 (2000), 1413-1423.
doi: 10.1029/2000WR900032. |
[10] |
A. H. Bhrawya and M. A. Abdelkawy,
A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294 (2015), 462-483.
doi: 10.1016/j.jcp.2015.03.063. |
[11] |
A. H. Bhrawy and M. A. Zaky,
Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85 (2016), 1815-1823.
doi: 10.1007/s11071-016-2797-y. |
[12] |
A. H. Bhrawy and M. A. Zaky,
Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101-116.
doi: 10.1007/s11071-014-1854-7. |
[13] |
C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1998. Google Scholar |
[14] |
Y. Chen, L. Liu, B. Li and Y. Sun,
Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329-341.
doi: 10.1016/j.amc.2014.03.066. |
[15] |
C. F. M. Coimbra,
Mechanics with variable-order differential operators, Ann. Phys, 12 (2003), 692-703.
doi: 10.1002/andp.200310032. |
[16] |
M. Dehghan and A. Shokri,
A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. Math. Appl., 54 (2007), 136-146.
doi: 10.1016/j.camwa.2007.01.038. |
[17] |
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982.
![]() |
[18] |
E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and RobertA. Van Gorder,
Jacobi–Gauss–Lobatto collocation method for the numerical solution of $1+1$ nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244-255.
doi: 10.1016/j.jcp.2014.01.003. |
[19] |
M. D. Feit, J. A. Fleck Jr. and A. Steiger,
Solution of the Schrödinger equation by a spectral method, Computational Physics, 47 (1982), 412-433.
doi: 10.1016/0021-9991(82)90091-2. |
[20] |
Z. Gao and S. Xie,
Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004. |
[21] |
J. F. Gómez-Aguilar and A. Atangana,
New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 1-13.
doi: 10.1140/epjp/i2017-11293-3. |
[22] |
J. F. Gómez-Aguilar, H. Yépez–Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ., 2017 (2017), Paper No. 68, 18 pp.
doi: 10.1186/s13662-017-1120-7. |
[23] |
S. H. M. Hamed, E. A. Yousif and A. I. Arbab, Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Art. ID 863015, 13pp.
doi: 10.1155/2014/863015. |
[24] |
A. Hasegawa, Optical Solitons in Fibers, Berlin: Springer-Verlag, 1993.
doi: 10.1117/12.2308783. |
[25] |
M. A. E. Herzallah and K. A. Gepreel,
Approximate solution to the time–space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36 (2012), 5678-5685.
doi: 10.1016/j.apm.2012.01.012. |
[26] |
M. H. Heydari, Wavelets Galerkin method for the fractional subdiffusion equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061014, 7pp.
doi: 10.1115/1.4034391. |
[27] |
M. H. Heydari,
A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355 (2018), 4970-4995.
doi: 10.1016/j.jfranklin.2018.05.025. |
[28] |
M. H. Heydari and Z. Avazzadeh,
Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons and Fractals, 112 (2018), 180-190.
doi: 10.1016/j.chaos.2018.04.028. |
[29] |
M. H. Heydari and Z. Avazzadeh,
An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37 (2018), 4397-4411.
doi: 10.1007/s40314-018-0580-z. |
[30] |
M. H. Heydari and Z. Avazzadeh,
A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20 (2018), 1804-1817.
doi: 10.1002/asjc.1687. |
[31] |
M. H. Heydari, Z. Avazzadeh and M. Farzi Haromi,
A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215-228.
doi: 10.1016/j.amc.2018.08.034. |
[32] |
M. H. Heydari, M. R. Hooshmandasl, C. Cattani and G. Hariharan,
An optimization wavelet method for multi variable-order fractional differential equations, Fund. Inform., 151 (2017), 255-273.
doi: 10.3233/FI-2017-1491. |
[33] |
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani,
Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379 (2015), 71-76.
doi: 10.1016/j.physleta.2014.11.012. |
[34] |
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani,
Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286 (2016), 139-154.
doi: 10.1016/j.amc.2016.04.009. |
[35] |
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and F. Feriedouni,
Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37 (2013), 1331-1338.
doi: 10.1016/j.enganabound.2013.07.002. |
[36] |
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi,
Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234 (2014), 267-276.
doi: 10.1016/j.amc.2014.02.047. |
[37] |
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi,
Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech., 6 (2014), 247-260.
doi: 10.4208/aamm.12-m12132. |
[38] |
M. Hosseininia, M. H. Heydari, R. Roohi and Z. Avazzadeh,
A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 1-18.
doi: 10.1016/j.jcp.2019.06.024. |
[39] |
M. Hosseininia, M. H. Heydari, Z. Avazzadeh and F. M. Maalek Ghaini,
Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793-802.
doi: 10.1515/ijnsns-2018-0168. |
[40] |
M. Hosseininia, M. H. Heydari, F. M. Maalek Ghaini and Z. Avazzadeh,
A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730.
doi: 10.1016/j.camwa.2019.06.008. |
[41] |
J. Hu, J. Xin and H. Lu,
The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.
doi: 10.1016/j.camwa.2011.05.039. |
[42] |
M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45. Institution of Electrical Engineers (IEE), London, 2000.
doi: 10.1049/PBEW045E. |
[43] |
X. Li and B. Wu,
A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113.
doi: 10.1016/j.aml.2014.12.012. |
[44] |
J. Lin, Y. Hong, L.-H. Kuo and C.-S. Liu,
Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions, Eng. Anal. Bound. Elem., 78 (2017), 20-25.
doi: 10.1016/j.enganabound.2017.02.002. |
[45] |
R. Lin, F. Liu, V. Anh and I. Turner,
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.
doi: 10.1016/j.amc.2009.02.047. |
[46] |
F. Liu, V. Anh and I. Turner,
Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209-219.
doi: 10.1016/j.cam.2003.09.028. |
[47] |
R. Metzler and J. Klafter,
Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.
doi: 10.1016/S0378-4371(99)00503-8. |
[48] |
B. P. Moghaddam, J. A. T. Machado and H. Behforooz,
An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354-360.
doi: 10.1016/j.chaos.2017.03.065. |
[49] |
A. Mohebbi and M. Dehghan,
The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225 (2009), 124-134.
doi: 10.1016/j.cam.2008.07.008. |
[50] |
B. Parsa Moghaddam and J. A. T. Machado,
Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71 (2017), 1351-1374.
doi: 10.1007/s10915-016-0343-1. |
[51] |
L. E. S. Ramirez and C. F. M. Coimbra,
On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240 (2011), 1111-1118.
doi: 10.1016/j.physd.2011.04.001. |
[52] |
K. M. Saad, M. M. Khader, J. F. Gómez–Aguilar and D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116, 9pp.
doi: 10.1063/1.5086771. |
[53] |
A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications., Chaos, 7 (1997), 753.
doi: 10.1063/1.166272. |
[54] |
S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213-236. Google Scholar |
[55] |
S. Samko,
Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71 (2013), 653-662.
doi: 10.1007/s11071-012-0485-0. |
[56] |
S. G. Samko and B. Ross,
Integration and differentiation to a variable fractional order, Integral Transform Spec. Funct., 1 (1993), 277-300.
doi: 10.1080/10652469308819027. |
[57] |
E. Scalas, R. Gorenflo and F. Mainardi,
Fractional calculus and continuous-time finance, Phys. A, 284 (2000), 376-384.
doi: 10.1016/S0378-4371(00)00255-7. |
[58] |
A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999.
![]() |
[59] |
S. Shen, F. Liu, J. Chen, I. Turner and V. Anh,
Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861-10870.
doi: 10.1016/j.amc.2012.04.047. |
[60] |
E. Shivanian and A. Jafarabadi,
An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis, Eng. Anal. Bound. Elem., 83 (2017), 74-86.
doi: 10.1016/j.enganabound.2017.07.012. |
[61] |
J.-J. Shyu, S.-C. Pei and C.-H. Chan,
An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89 (2009), 320-327.
doi: 10.1016/j.sigpro.2008.09.009. |
[62] |
H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), Article number: 185.
doi: 10.1140/epjst/e2011-01390-6. |
[63] |
F. D. Tappert, The parabolic approximation method, Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Physics, Springer, Berlin, 70 (1977), 224–287. |
[64] |
A. Tayebi, Y. Shekari and M. H. Heydari,
A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340 (2017), 655-669.
doi: 10.1016/j.jcp.2017.03.061. |
[65] | K. Y and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003. Google Scholar |
[66] |
S. Yaghoobi, B. P. Moghaddam and K. Ivaz,
An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynam., 87 (2017), 815-826.
doi: 10.1007/s11071-016-3079-4. |
[67] |
H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 17pp.
doi: 10.1051/mmnp/2018002. |
[68] |
F. Yin, J. Song and F. Lu,
A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 37 (2014), 781-792.
doi: 10.1002/mma.2834. |
[69] |
S. B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett, 87 (2001), 118301.
doi: 10.1103/PhysRevLett.87.118301. |
[70] |
M. Zayernouri and G. E. Karniadakis,
Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312-338.
doi: 10.1016/j.jcp.2014.12.001. |
show all references
References:
[1] |
M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Romanian Reports in Physics, 67 (2015), 773-791. Google Scholar |
[2] |
E. A.-B. Abdel-Salama, E. A. Yousif and M. A. El-Aasser, On the solution of the space-time fractional cubic nonlinear schrödinger equation, Physics, 2017. Google Scholar |
[3] |
L. Acedo, S. B. Yuste and K. Lindenberg, Reaction front in an $a+b\rightarrow c$ reaction-subdiffusion process, Phys. Rev. E, 69 (2004), 136-144. Google Scholar |
[4] |
A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, 6 (1998), Article ID 38298, 7 pages.
doi: 10.1155/1998/38298. |
[5] |
A. Atangana and J. F. Gómez–Aguilar,
Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos, Solitons and Fractals, 114 (2018), 516-535.
doi: 10.1016/j.chaos.2018.07.033. |
[6] |
A. Atangana and J. F. Gómez-Aguilar,
Numerical approximation of Riemann–Liouville definition of fractional derivative: From Riemann–Liouville to Atangana–Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.
doi: 10.1002/num.22195. |
[7] |
T. Bakkyaraj and R. Sahadevan,
Approximate analytical solution of two coupled time fractional nonlinear schrödinger equations, Int. J. Appl. Comput. Math, 2 (2016), 113-135.
doi: 10.1007/s40819-015-0049-3. |
[8] |
E. Barkai, R. Metzler and J. Klafter,
From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.
doi: 10.1103/PhysRevE.61.132. |
[9] |
D.A. Benson, S. W. Wheatcraft and M. M. Meerschaert,
The fractional-order governing equation of lévy motion, Water Resources Research, 36 (2000), 1413-1423.
doi: 10.1029/2000WR900032. |
[10] |
A. H. Bhrawya and M. A. Abdelkawy,
A fully spectral collocation approximation for multi-dimensional fractional schrödinger equations, J. Comput. Phys., 294 (2015), 462-483.
doi: 10.1016/j.jcp.2015.03.063. |
[11] |
A. H. Bhrawy and M. A. Zaky,
Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85 (2016), 1815-1823.
doi: 10.1007/s11071-016-2797-y. |
[12] |
A. H. Bhrawy and M. A. Zaky,
Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80 (2015), 101-116.
doi: 10.1007/s11071-014-1854-7. |
[13] |
C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1998. Google Scholar |
[14] |
Y. Chen, L. Liu, B. Li and Y. Sun,
Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329-341.
doi: 10.1016/j.amc.2014.03.066. |
[15] |
C. F. M. Coimbra,
Mechanics with variable-order differential operators, Ann. Phys, 12 (2003), 692-703.
doi: 10.1002/andp.200310032. |
[16] |
M. Dehghan and A. Shokri,
A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput. Math. Appl., 54 (2007), 136-146.
doi: 10.1016/j.camwa.2007.01.038. |
[17] |
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982.
![]() |
[18] |
E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and RobertA. Van Gorder,
Jacobi–Gauss–Lobatto collocation method for the numerical solution of $1+1$ nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244-255.
doi: 10.1016/j.jcp.2014.01.003. |
[19] |
M. D. Feit, J. A. Fleck Jr. and A. Steiger,
Solution of the Schrödinger equation by a spectral method, Computational Physics, 47 (1982), 412-433.
doi: 10.1016/0021-9991(82)90091-2. |
[20] |
Z. Gao and S. Xie,
Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004. |
[21] |
J. F. Gómez-Aguilar and A. Atangana,
New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 1-13.
doi: 10.1140/epjp/i2017-11293-3. |
[22] |
J. F. Gómez-Aguilar, H. Yépez–Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. F. Escobar-Jiménez and V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Difference Equ., 2017 (2017), Paper No. 68, 18 pp.
doi: 10.1186/s13662-017-1120-7. |
[23] |
S. H. M. Hamed, E. A. Yousif and A. I. Arbab, Analytic and approximate solutions of the space-time fractional Schrödinger equations by homotopy perturbation sumudu transform method, Abstr. Appl. Anal., 2014 (2014), Art. ID 863015, 13pp.
doi: 10.1155/2014/863015. |
[24] |
A. Hasegawa, Optical Solitons in Fibers, Berlin: Springer-Verlag, 1993.
doi: 10.1117/12.2308783. |
[25] |
M. A. E. Herzallah and K. A. Gepreel,
Approximate solution to the time–space fractional cubic nonlinear Schrödinger equation, Appl. Math. Model., 36 (2012), 5678-5685.
doi: 10.1016/j.apm.2012.01.012. |
[26] |
M. H. Heydari, Wavelets Galerkin method for the fractional subdiffusion equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061014, 7pp.
doi: 10.1115/1.4034391. |
[27] |
M. H. Heydari,
A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst., 355 (2018), 4970-4995.
doi: 10.1016/j.jfranklin.2018.05.025. |
[28] |
M. H. Heydari and Z. Avazzadeh,
Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos, Solitons and Fractals, 112 (2018), 180-190.
doi: 10.1016/j.chaos.2018.04.028. |
[29] |
M. H. Heydari and Z. Avazzadeh,
An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37 (2018), 4397-4411.
doi: 10.1007/s40314-018-0580-z. |
[30] |
M. H. Heydari and Z. Avazzadeh,
A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20 (2018), 1804-1817.
doi: 10.1002/asjc.1687. |
[31] |
M. H. Heydari, Z. Avazzadeh and M. Farzi Haromi,
A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341 (2019), 215-228.
doi: 10.1016/j.amc.2018.08.034. |
[32] |
M. H. Heydari, M. R. Hooshmandasl, C. Cattani and G. Hariharan,
An optimization wavelet method for multi variable-order fractional differential equations, Fund. Inform., 151 (2017), 255-273.
doi: 10.3233/FI-2017-1491. |
[33] |
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani,
Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379 (2015), 71-76.
doi: 10.1016/j.physleta.2014.11.012. |
[34] |
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and C. Cattani,
Wavelets method for solving fractional optimal control problems, Appl. Math. Comput., 286 (2016), 139-154.
doi: 10.1016/j.amc.2016.04.009. |
[35] |
M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini and F. Feriedouni,
Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions, Eng. Anal. Bound. Elem., 37 (2013), 1331-1338.
doi: 10.1016/j.enganabound.2013.07.002. |
[36] |
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi,
Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions, Appl. Math. Comput., 234 (2014), 267-276.
doi: 10.1016/j.amc.2014.02.047. |
[37] |
M. H. Heydari, M. R. Hooshmandasl and F. Mohammadi,
Two-dimensional Legendre wavelets for solving time-fractional telegraph equation, Adv. Appl. Math. Mech., 6 (2014), 247-260.
doi: 10.4208/aamm.12-m12132. |
[38] |
M. Hosseininia, M. H. Heydari, R. Roohi and Z. Avazzadeh,
A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 1-18.
doi: 10.1016/j.jcp.2019.06.024. |
[39] |
M. Hosseininia, M. H. Heydari, Z. Avazzadeh and F. M. Maalek Ghaini,
Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 793-802.
doi: 10.1515/ijnsns-2018-0168. |
[40] |
M. Hosseininia, M. H. Heydari, F. M. Maalek Ghaini and Z. Avazzadeh,
A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730.
doi: 10.1016/j.camwa.2019.06.008. |
[41] |
J. Hu, J. Xin and H. Lu,
The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.
doi: 10.1016/j.camwa.2011.05.039. |
[42] |
M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Electromagnetic Waves Series, 45. Institution of Electrical Engineers (IEE), London, 2000.
doi: 10.1049/PBEW045E. |
[43] |
X. Li and B. Wu,
A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113.
doi: 10.1016/j.aml.2014.12.012. |
[44] |
J. Lin, Y. Hong, L.-H. Kuo and C.-S. Liu,
Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions, Eng. Anal. Bound. Elem., 78 (2017), 20-25.
doi: 10.1016/j.enganabound.2017.02.002. |
[45] |
R. Lin, F. Liu, V. Anh and I. Turner,
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435-445.
doi: 10.1016/j.amc.2009.02.047. |
[46] |
F. Liu, V. Anh and I. Turner,
Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166 (2004), 209-219.
doi: 10.1016/j.cam.2003.09.028. |
[47] |
R. Metzler and J. Klafter,
Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107-125.
doi: 10.1016/S0378-4371(99)00503-8. |
[48] |
B. P. Moghaddam, J. A. T. Machado and H. Behforooz,
An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354-360.
doi: 10.1016/j.chaos.2017.03.065. |
[49] |
A. Mohebbi and M. Dehghan,
The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225 (2009), 124-134.
doi: 10.1016/j.cam.2008.07.008. |
[50] |
B. Parsa Moghaddam and J. A. T. Machado,
Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71 (2017), 1351-1374.
doi: 10.1007/s10915-016-0343-1. |
[51] |
L. E. S. Ramirez and C. F. M. Coimbra,
On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Phys. D, 240 (2011), 1111-1118.
doi: 10.1016/j.physd.2011.04.001. |
[52] |
K. M. Saad, M. M. Khader, J. F. Gómez–Aguilar and D. Baleanu, Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116, 9pp.
doi: 10.1063/1.5086771. |
[53] |
A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: Solutions and applications., Chaos, 7 (1997), 753.
doi: 10.1063/1.166272. |
[54] |
S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213-236. Google Scholar |
[55] |
S. Samko,
Fractional integration and differentiation of variable order: An overview, Nonlinear Dynam., 71 (2013), 653-662.
doi: 10.1007/s11071-012-0485-0. |
[56] |
S. G. Samko and B. Ross,
Integration and differentiation to a variable fractional order, Integral Transform Spec. Funct., 1 (1993), 277-300.
doi: 10.1080/10652469308819027. |
[57] |
E. Scalas, R. Gorenflo and F. Mainardi,
Fractional calculus and continuous-time finance, Phys. A, 284 (2000), 376-384.
doi: 10.1016/S0378-4371(00)00255-7. |
[58] |
A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999.
![]() |
[59] |
S. Shen, F. Liu, J. Chen, I. Turner and V. Anh,
Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218 (2012), 10861-10870.
doi: 10.1016/j.amc.2012.04.047. |
[60] |
E. Shivanian and A. Jafarabadi,
An efficient numerical technique for solution of two-dimensional cubic nonlinear Schrödinger equation with error analysis, Eng. Anal. Bound. Elem., 83 (2017), 74-86.
doi: 10.1016/j.enganabound.2017.07.012. |
[61] |
J.-J. Shyu, S.-C. Pei and C.-H. Chan,
An iterative method for the design of variable fractional-order FIR differintegrators, Signal Process., 89 (2009), 320-327.
doi: 10.1016/j.sigpro.2008.09.009. |
[62] |
H. G. Sun, W. Chen, H. Wei and Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), Article number: 185.
doi: 10.1140/epjst/e2011-01390-6. |
[63] |
F. D. Tappert, The parabolic approximation method, Wave Propagation and Underwater Acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Physics, Springer, Berlin, 70 (1977), 224–287. |
[64] |
A. Tayebi, Y. Shekari and M. H. Heydari,
A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340 (2017), 655-669.
doi: 10.1016/j.jcp.2017.03.061. |
[65] | K. Y and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York, 2003. Google Scholar |
[66] |
S. Yaghoobi, B. P. Moghaddam and K. Ivaz,
An efficient cubic spline approximation for variable-order fractional differential equations with time delay, Nonlinear Dynam., 87 (2017), 815-826.
doi: 10.1007/s11071-016-3079-4. |
[67] |
H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Math. Model. Nat. Phenom., 13 (2018), 17pp.
doi: 10.1051/mmnp/2018002. |
[68] |
F. Yin, J. Song and F. Lu,
A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein-Gordon equations, Math. Methods Appl. Sci., 37 (2014), 781-792.
doi: 10.1002/mma.2834. |
[69] |
S. B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett, 87 (2001), 118301.
doi: 10.1103/PhysRevLett.87.118301. |
[70] |
M. Zayernouri and G. E. Karniadakis,
Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312-338.
doi: 10.1016/j.jcp.2014.12.001. |












|
|||||||||||
0.1 | 1.0972E-4 | 2.7299E-4 | 2.9405E-4 | 5.4640E-5 | 1.3650E-4 | 5.6319E-4 | 2.7320E-5 | 6.8250E-5 | 7.3515E-5 | ||
0.3 | 1.4037E-4 | 2.9682E-4 | 3.2834E-4 | 7.0180E-5 | 1.4841E-4 | 7.1732E-4 | 3.5090E-5 | 7.4200E-5 | 8.2779E-5 | ||
0.5 | 7.2400E-4 | 1.2708E-3 | 1.5000E-3 | 3.6200E-4 | 6.3540E-4 | 7.3128E-4 | 1.8100E-4 | 3.1770E-4 | 3.6564E-4 | ||
0.7 | 2.1281E-4 | 3.2733E-3 | 3.3000E-3 | 1.0640E-4 | 1.6367E-3 | 1.600E-4 | 5.3200E-5 | 8.1835E-4 | 9.7607E-4 | ||
0.9 | 1.5228E-3 | 1.0266E-3 | 1.8000E-3 | 7.6140E-4 | 5.1130E-4 | 9.1715E-4 | 3.8070E-4 | 2.5565E-4 | 4.5857E-4 | ||
1.0 | 8.3072E-4 | 1.0078E-3 | 1.3000E-3 | 4.1536E-4 | 5.0390E-4 | 6.5302E-4 | 2.0768E-4 | 2.5159E-4 | 3.2651E-4 |
|
|||||||||||
0.1 | 1.0972E-4 | 2.7299E-4 | 2.9405E-4 | 5.4640E-5 | 1.3650E-4 | 5.6319E-4 | 2.7320E-5 | 6.8250E-5 | 7.3515E-5 | ||
0.3 | 1.4037E-4 | 2.9682E-4 | 3.2834E-4 | 7.0180E-5 | 1.4841E-4 | 7.1732E-4 | 3.5090E-5 | 7.4200E-5 | 8.2779E-5 | ||
0.5 | 7.2400E-4 | 1.2708E-3 | 1.5000E-3 | 3.6200E-4 | 6.3540E-4 | 7.3128E-4 | 1.8100E-4 | 3.1770E-4 | 3.6564E-4 | ||
0.7 | 2.1281E-4 | 3.2733E-3 | 3.3000E-3 | 1.0640E-4 | 1.6367E-3 | 1.600E-4 | 5.3200E-5 | 8.1835E-4 | 9.7607E-4 | ||
0.9 | 1.5228E-3 | 1.0266E-3 | 1.8000E-3 | 7.6140E-4 | 5.1130E-4 | 9.1715E-4 | 3.8070E-4 | 2.5565E-4 | 4.5857E-4 | ||
1.0 | 8.3072E-4 | 1.0078E-3 | 1.3000E-3 | 4.1536E-4 | 5.0390E-4 | 6.5302E-4 | 2.0768E-4 | 2.5159E-4 | 3.2651E-4 |
|
|||||||||||
0.1 | 2.9620E-5 | 1.0970E-4 | 1.1363E-4 | 1.4703E-5 | 5.4867E-5 | 5.6803E-5 | 7.3241E-6 | 2.7443E-5 | 2.8404E-5 | ||
0.3 | 8.8820E-5 | 3.2366E-4 | 3.3563E-4 | 4.4328E-5 | 1.6168E-4 | 1.6765E-4 | 2.2127E-5 | 8.0924E-5 | 8.3895E-5 | ||
0.5 | 1.3329E-4 | 4.7940E-4 | 4.9758E-4 | 6.6425E-5 | 2.3966E-4 | 2.4869E-4 | 3.3150E-5 | 1.1985E-4 | 1.2435E-4 | ||
0.7 | 1.1238E-4 | 3.9372E-4 | 4.0944E-4 | 5.5570E-5 | 1.9680E-4 | 2.0450E-4 | 2.7615E-5 | 9.8391E-5 | 1.0219E-4 | ||
0.9 | 9.3184E-5 | 3.9345E-4 | 4.0433E-4 | 4.8381E-5 | 1.9775E-4 | 2.0358E-4 | 2.4638E-5 | 9.9143E-5 | 1.0216E-4 | ||
1.0 | 3.3547E-4 | 1.3286E-3 | 1.4000E-3 | 1.7082E-4 | 6.6725E-4 | 6.8877E-4 | 8.6191E-5 | 3.3438E-4 | 3.4531E-4 |
|
|||||||||||
0.1 | 2.9620E-5 | 1.0970E-4 | 1.1363E-4 | 1.4703E-5 | 5.4867E-5 | 5.6803E-5 | 7.3241E-6 | 2.7443E-5 | 2.8404E-5 | ||
0.3 | 8.8820E-5 | 3.2366E-4 | 3.3563E-4 | 4.4328E-5 | 1.6168E-4 | 1.6765E-4 | 2.2127E-5 | 8.0924E-5 | 8.3895E-5 | ||
0.5 | 1.3329E-4 | 4.7940E-4 | 4.9758E-4 | 6.6425E-5 | 2.3966E-4 | 2.4869E-4 | 3.3150E-5 | 1.1985E-4 | 1.2435E-4 | ||
0.7 | 1.1238E-4 | 3.9372E-4 | 4.0944E-4 | 5.5570E-5 | 1.9680E-4 | 2.0450E-4 | 2.7615E-5 | 9.8391E-5 | 1.0219E-4 | ||
0.9 | 9.3184E-5 | 3.9345E-4 | 4.0433E-4 | 4.8381E-5 | 1.9775E-4 | 2.0358E-4 | 2.4638E-5 | 9.9143E-5 | 1.0216E-4 | ||
1.0 | 3.3547E-4 | 1.3286E-3 | 1.4000E-3 | 1.7082E-4 | 6.6725E-4 | 6.8877E-4 | 8.6191E-5 | 3.3438E-4 | 3.4531E-4 |
|
|||||||||||
0.1 | 1.5350E-5 | 2.9309E-5 | 3.3085E-5 | 1.5040E-5 | 3.1348E-5 | 3.4769E-5 | 1.5840E-5 | 3.0785E-5 | 3.4621E-5 | ||
0.3 | 6.3197E-6 | 5.3790E-5 | 5.4160E-5 | 6.2715E-6 | 5.3587E-5 | 5.3953E-5 | 5.7390E-6 | 5.4213E-5 | 5.4516E-5 | ||
0.5 | 3.1960E-5 | 4.8457E-5 | 5.8084E-5 | 3.4046E-5 | 4.8869E-5 | 5.9559E-5 | 3.4143E-5 | 4.7114E-5 | 5.8185E-5 | ||
0.7 | 2.4709E-5 | 3.2107E-5 | 4.0514E-5 | 2.4347E-5 | 3.3151E-5 | 4.1131E-5 | 2.5224E-5 | 3.6278E-5 | 4.4185E-5 | ||
0.9 | 3.2024E-5 | 4.0227E-5 | 5.1417E-5 | 3.1606E-5 | 4.0445E-5 | 5.1330E-5 | 3.1359E-5 | 3.9262E-5 | 5.0248E-5 | ||
1.0 | 4.7832E-5 | 3.7982E-5 | 6.1078E-5 | 4.6654E-5 | 3.8333E-4 | 3.8616E-4 | 4.4804E-4 | 3.6276E-5 | 4.4951E-4 |
|
|||||||||||
0.1 | 1.5350E-5 | 2.9309E-5 | 3.3085E-5 | 1.5040E-5 | 3.1348E-5 | 3.4769E-5 | 1.5840E-5 | 3.0785E-5 | 3.4621E-5 | ||
0.3 | 6.3197E-6 | 5.3790E-5 | 5.4160E-5 | 6.2715E-6 | 5.3587E-5 | 5.3953E-5 | 5.7390E-6 | 5.4213E-5 | 5.4516E-5 | ||
0.5 | 3.1960E-5 | 4.8457E-5 | 5.8084E-5 | 3.4046E-5 | 4.8869E-5 | 5.9559E-5 | 3.4143E-5 | 4.7114E-5 | 5.8185E-5 | ||
0.7 | 2.4709E-5 | 3.2107E-5 | 4.0514E-5 | 2.4347E-5 | 3.3151E-5 | 4.1131E-5 | 2.5224E-5 | 3.6278E-5 | 4.4185E-5 | ||
0.9 | 3.2024E-5 | 4.0227E-5 | 5.1417E-5 | 3.1606E-5 | 4.0445E-5 | 5.1330E-5 | 3.1359E-5 | 3.9262E-5 | 5.0248E-5 | ||
1.0 | 4.7832E-5 | 3.7982E-5 | 6.1078E-5 | 4.6654E-5 | 3.8333E-4 | 3.8616E-4 | 4.4804E-4 | 3.6276E-5 | 4.4951E-4 |
|
|||||||
0.2 | 7.0513E-5 | 4.6682E-4 | 4.7212E-4 | 7.0460E-5 | 4.6155E-4 | 4.6690E-4 | |
0.4 | 2.5190E-5 | 4.0126E- 4 | 4.0205E-4 | 2.4703E-5 | 3.9546E-4 | 3.9623E-4 | |
0.6 | 7.0915E-5 | 2.8288E-4 | 2.9163E-4 | 6.5807E-5 | 2.8002E-4 | 2.8765E-4 | |
0.8 | 1.5620E-4 | 1.6841E-4 | 2.2970E-4 | 1.5549E-4 | 1.6815E-4 | 2.2902E-4 | |
1.0 | 2.4920E-4 | 8.7739E-5 | 2.6419E-4 | 2.5251E-4 | 8.8278E-5 | 2.6750E-4 |
|
|||||||
0.2 | 7.0513E-5 | 4.6682E-4 | 4.7212E-4 | 7.0460E-5 | 4.6155E-4 | 4.6690E-4 | |
0.4 | 2.5190E-5 | 4.0126E- 4 | 4.0205E-4 | 2.4703E-5 | 3.9546E-4 | 3.9623E-4 | |
0.6 | 7.0915E-5 | 2.8288E-4 | 2.9163E-4 | 6.5807E-5 | 2.8002E-4 | 2.8765E-4 | |
0.8 | 1.5620E-4 | 1.6841E-4 | 2.2970E-4 | 1.5549E-4 | 1.6815E-4 | 2.2902E-4 | |
1.0 | 2.4920E-4 | 8.7739E-5 | 2.6419E-4 | 2.5251E-4 | 8.8278E-5 | 2.6750E-4 |
[1] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[2] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[3] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[4] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[5] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[6] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[7] |
Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230 |
[8] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[9] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[10] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[11] |
Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122 |
[12] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[13] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[14] |
Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006 |
[15] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[16] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[17] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[18] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[19] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[20] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]