
-
Previous Article
Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity
- DCDS-S Home
- This Issue
-
Next Article
Preface
Optimal laminates in single-slip elastoplasticity
1. | Universität Bonn, Bonn, D-53115, Germany |
2. | Universität Regensburg, Regensburg, D-93053, Germany |
Recent progress in the mathematical analysis of variational models for the plastic deformation of crystals in a geometrically nonlinear setting is discussed. The focus lies on the first time-step and on situations where only one slip system is active, in two spatial dimensions. The interplay of invariance under finite rotations and plastic deformation leads to the emergence of microstructures, which can be analyzed in the framework of relaxation theory using the theory of quasiconvexity. A class of elastoplastic energies with one active slip system that converge asymptotically to a model with rigid elasticity is presented and the interplay between relaxation and asymptotics is investigated.
References:
[1] |
N. Albin, S. Conti and G. Dolzmann,
Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 685-708.
doi: 10.1017/S0308210508000127. |
[2] |
J. M. Ball, B. Kirchheim and J. Kristensen,
Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, 11 (2000), 333-359.
doi: 10.1007/s005260000041. |
[3] |
S. Bartels, C. Carstensen, K. Hackl and U. Hoppe,
Effective relaxation for microstructure simulations: Algorithms and applications, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143-5175.
doi: 10.1016/j.cma.2003.12.065. |
[4] |
S. Bartels,
Linear convergence in the approximation of rank-one convex envelopes, M2AN Math. Model. Numer. Anal., 38 (2004), 811-820.
doi: 10.1051/m2an:2004040. |
[5] |
S. Bartels,
Reliable and efficient approximation of polyconvex envelopes, SIAM J. Numer. Anal., 43 (2005), 363-385.
doi: 10.1137/S0036142903428840. |
[6] |
S. Bartels and T. Roubíček,
Linear-programming approach to nonconvex variational problems, Numer. Math., 99 (2004), 251-287.
doi: 10.1007/s00211-004-0549-2. |
[7] |
C. Carstensen, Nonconvex energy minimization and relaxation in computational material science, in IUTAM Symposium on Computational Mechanics of Solid {M}aterials at Large {S}trains (Stuttgart, 2001), Solid Mech. Appl., 108, Kluwer Acad. Publ., Dordrecht, 2003, 3–20.
doi: 10.1007/978-94-017-0297-3_1. |
[8] |
C. Carstensen, S. Conti and A. Orlando,
Mixed analytical-numerical relaxation in finite single-slip crystal plasticity, Contin. Mech. Thermodyn., 20 (2008), 275-301.
doi: 10.1007/s00161-008-0082-0. |
[9] |
C. Carstensen and P. Plecháč,
Numerical analysis of compatible phase transitions in elastic solids, SIAM J. Numer. Anal., 37 (2000), 2061-2081.
doi: 10.1137/S0036142998337697. |
[10] |
C. Carstensen, Numerical analysis of microstructure, in Theory and Numerics of Differential Equations (Durham, 2000), Universitext, Springer, Berlin, 2001, 59–126.
doi: 10.1007/978-3-662-04354-7_2. |
[11] |
C. Carstensen, K. Hackl and A. Mielke,
Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), 299-317.
doi: 10.1098/rspa.2001.0864. |
[12] |
C. Carstensen and S. Müller,
Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal., 34 (2002), 495-509.
doi: 10.1137/S0036141001396436. |
[13] |
C. Carstensen and P. Plecháč,
Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp., 66 (1997), 997-1026.
doi: 10.1090/S0025-5718-97-00849-1. |
[14] |
C. Carstensen and T. Roubíček,
Numerical approximation of Young measures in non-convex variational problems, Numer. Math., 84 (2000), 395-415.
doi: 10.1007/s002110050003. |
[15] |
M. Chipot,
Numerical analysis of oscillations in nonconvex problems, Numer. Math., 59 (1991), 747-767.
doi: 10.1007/BF01385808. |
[16] |
M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of Domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997), Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht, 1999,317–325.
doi: 10.1007/978-94-011-4738-5_38. |
[17] |
M. Cicalese and N. Fusco, A note on relaxation with constraints on the determinant, ESAIM: Control Optim. Calc. Var., 25 (2019), 15pp.
doi: 10.1051/cocv/2018030. |
[18] |
S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening, in Multiscale Materials Modeling, Fraunhofer IRB, Freiburg, 2006, 30–35. Google Scholar |
[19] |
S. Conti, A. DeSimone and G. Dolzmann,
Soft elastic response of stretched sheets of nematic elastomers: A numerical study, J. Mech. Phys. Solids, 50 (2002), 1431-1451.
doi: 10.1016/S0022-5096(01)00120-X. |
[20] |
S. Conti, G. Dolzmann and C. Klust,
Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1735-1742.
doi: 10.1098/rspa.2008.0390. |
[21] |
S. Conti, G. Dolzmann and C. Kreisbeck,
Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Anal., 43 (2011), 2337-2353.
doi: 10.1137/100810320. |
[22] |
S. Conti and G. Dolzmann,
Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, Math. Models. Methods Appl. Sci., 24 (2014), 2929-2942.
doi: 10.1142/S0218202514500419. |
[23] |
S. Conti and G. Dolzmann, Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening, Continuum Mech. Thermodyn. (2019).
doi: 10.1007/s00161-019-00825-8. |
[24] |
S. Conti and G. Dolzmann,
On the theory of relaxation in nonlinear elasticity with constraints on the determinant, Arch. Ration. Mech. Anal., 217 (2015), 413-437.
doi: 10.1007/s00205-014-0835-9. |
[25] |
S. Conti and G. Dolzmann,
Relaxation in crystal plasticity with three active slip systems, Contin. Mech. Thermodyn., 28 (2016), 1477-1494.
doi: 10.1007/s00161-015-0490-x. |
[26] |
S. Conti and G. Dolzmann,
An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, J. Mech. Phys. Solids, 113 (2018), 126-143.
doi: 10.1016/j.jmps.2018.02.001. |
[27] |
S. Conti and G. Dolzmann,
Numerical study of microstructures in single-slip finite elastoplasticity, J. Optim. Theory Appl., 184 (2020), 43-60.
doi: 10.1007/s10957-018-01460-0. |
[28] |
S. Conti, G. Dolzmann and C. Kreisbeck,
Relaxation of a model in finite plasticity with two slip systems, Math. Models Methods Appl. Sci., 23 (2013), 2111-2128.
doi: 10.1142/S0218202513500279. |
[29] |
S. Conti and F. Theil,
Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178 (2005), 125-148.
doi: 10.1007/s00205-005-0371-8. |
[30] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-51440-1. |
[31] |
G. Dal Maso, An Introduction to {$\Gamma$-Convergence}, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[32] |
E. Davoli and G. A. Francfort,
A critical revisiting of finite elasto-plasticity, SIAM J. Math. Anal., 47 (2015), 526-565.
doi: 10.1137/140965090. |
[33] |
E. De Giorgi,
Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat. (6), 8 (1975), 277-294.
|
[34] |
A. DeSimone and G. Dolzmann,
Macroscopic response of nematic elastomers via relaxation of a class of $\rm SO(3)$-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), 181-204.
doi: 10.1007/s002050100174. |
[35] |
E. D. Giorgi and T. Franzoni,
Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58 (1975), 842-850.
|
[36] |
K. Hackl, S. Heinz and A. Mielke,
A model for the evolution of laminates in finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 92 (2012), 888-909.
doi: 10.1002/zamm.201100155. |
[37] |
W. Han and B. D. Reddy, phPlasticity, in Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, 9, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5940-8. |
[38] |
E. Kröner,
Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 4 (1960), 273-334.
doi: 10.1007/BF00281393. |
[39] |
M. Kružík and T. Roubíček,
Optimization problems with concentration and oscillation effects: Relaxation theory and numerical approximation, Numer. Funct. Anal. Optim., 20 (1999), 511-530.
doi: 10.1080/01630569908816908. |
[40] |
G. Lauteri and S. Luckhaus, An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity, preprint, arXiv: 1608.06155. Google Scholar |
[41] |
H. Le Dret and A. Raoult,
The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1179-1192.
doi: 10.1017/S0308210500030456. |
[42] |
E. H. Lee,
Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6.
doi: 10.21236/AD0678483. |
[43] |
S. Luckhaus and L. Mugnai,
On a mesoscopic many-body {H}amiltonian describing elastic shears and dislocations, Contin. Mech. Thermodyn., 22 (2010), 251-290.
doi: 10.1007/s00161-010-0142-0. |
[44] |
S. Luckhaus and J. Wohlgemuth, Study of a model for reference-free plasticity, preprint, arXiv: 1408.1355. Google Scholar |
[45] |
M. Luskin, On the computation of crystalline microstructure, in Acta Numerica, 1996 , Acta Numer., 5, Cambridge Univ. Press, Cambridge, 1996, 191-257.
doi: 10.1017/S0962492900002658. |
[46] |
A. Mainik and A. Mielke,
Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248.
doi: 10.1007/s00332-008-9033-y. |
[47] |
C. Miehe,
On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity, Int. J. Plasticity, 10 (1994), 609-621.
doi: 10.1016/0749-6419(94)90025-6. |
[48] |
C. Miehe, M. Lambrecht and E. Gürses,
Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: Evolving deformation microstructures in finite plasticity, J. Mech. Phys. Solids, 52 (2004), 2725-2769.
doi: 10.1016/j.jmps.2004.05.011. |
[49] |
C. Miehe and E. Stein, A canonical model of multiplicative elasto-plasticity: Formulation and aspects of the numerical implementation, Europ. J. Mech. A/Solids, 11 (1992), 25-43. Google Scholar |
[50] |
C. Miehe and M. Lambrecht,
Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids, Internat. J. Numer. Methods Engrg., 58 (2003), 1-41.
doi: 10.1002/nme.726. |
[51] |
A. Mielke,
Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn., 15 (2003), 351-382.
doi: 10.1007/s00161-003-0120-x. |
[52] |
A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 86 (2006), 233–250, .
doi: 10.1002/zamm.200510245. |
[53] |
A. Mielke, R. Rossi and G. Savaré,
Global existence results for viscoplasticity at finite strain, Arch. Ration. Mech. Anal., 227 (2018), 423-475.
doi: 10.1007/s00205-017-1164-6. |
[54] |
A. Mielke and T. Roubíček, Rate-independent systems, in Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[55] |
A. Mielke and T. Roubíček,
Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models Methods Appl. Sci., 26 (2016), 2203-2236.
doi: 10.1142/S0218202516500512. |
[56] |
A. Mielke and U. Stefanelli,
Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity, J. Eur. Math. Soc. (JEMS), 15 (2013), 923-948.
doi: 10.4171/JEMS/381. |
[57] |
A. Mielke, F. Theil and V. I. Levitas,
A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[58] |
J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, 271 (1970), 608-611. Google Scholar |
[59] |
J. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band, 130, Springer-Verlag New York, Inc., New York, 1966.
doi: 10.1007/978-3-540-69952-1. |
[60] |
S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Lecture Notes in Math., 1713, Springer, Berlin, 1999, 85–210.
doi: 10.1007/BFb0092670. |
[61] |
S. Müller and V. Šverák,
Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS), 1 (1999), 393-442.
doi: 10.1007/s100970050012. |
[62] |
S. Müller, L. Scardia and C. I. Zeppieri, Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations, in Analysis and Computation of Microstructure in Finite Plasticity, Lect. Notes Appl. Comput. Mech., 78, Springer, Cham, 2015,175–204.
doi: 10.1007/978-3-319-18242-1_7. |
[63] |
M. Ortiz and E. A. Repetto,
Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462.
doi: 10.1016/S0022-5096(97)00096-3. |
[64] |
C. Reina and S. Conti,
Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of ${F} = {F}^e{F}^p$, J. Mech. Phys. Solids, 67 (2014), 40-61.
doi: 10.1016/j.jmps.2014.01.014. |
[65] |
C. Reina and S. Conti,
Incompressible inelasticity as an essential ingredient for the validity of the kinematic decomposition $F = F^eF^i$, J. Mech. Phys. Solids, 107 (2017), 322-342.
doi: 10.1016/j.jmps.2017.07.004. |
[66] |
T. Roubíček, Relaxation in Optimization Theory and Variational Calculus, De Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997.
doi: 10.1515/9783110811919. |
[67] |
T. Roubíček, Numerical techniques in relaxed optimization problems, in Robust Optimization-Directed Design, Nonconvex Optim. Appl., 81, Springer, New York, 2006,157–178.
doi: 10.1007/0-387-28654-3_8. |
[68] |
J. C. Simo,
A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66 (1988), 199-219.
doi: 10.1016/0045-7825(88)90076-X. |
[69] |
J. C. Simo and M. Ortiz,
A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods. Appl. Mech. Engrg., 49 (1985), 221-245.
doi: 10.1016/0045-7825(85)90061-1. |
show all references
References:
[1] |
N. Albin, S. Conti and G. Dolzmann,
Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 685-708.
doi: 10.1017/S0308210508000127. |
[2] |
J. M. Ball, B. Kirchheim and J. Kristensen,
Regularity of quasiconvex envelopes, Calc. Var. Partial Differential Equations, 11 (2000), 333-359.
doi: 10.1007/s005260000041. |
[3] |
S. Bartels, C. Carstensen, K. Hackl and U. Hoppe,
Effective relaxation for microstructure simulations: Algorithms and applications, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143-5175.
doi: 10.1016/j.cma.2003.12.065. |
[4] |
S. Bartels,
Linear convergence in the approximation of rank-one convex envelopes, M2AN Math. Model. Numer. Anal., 38 (2004), 811-820.
doi: 10.1051/m2an:2004040. |
[5] |
S. Bartels,
Reliable and efficient approximation of polyconvex envelopes, SIAM J. Numer. Anal., 43 (2005), 363-385.
doi: 10.1137/S0036142903428840. |
[6] |
S. Bartels and T. Roubíček,
Linear-programming approach to nonconvex variational problems, Numer. Math., 99 (2004), 251-287.
doi: 10.1007/s00211-004-0549-2. |
[7] |
C. Carstensen, Nonconvex energy minimization and relaxation in computational material science, in IUTAM Symposium on Computational Mechanics of Solid {M}aterials at Large {S}trains (Stuttgart, 2001), Solid Mech. Appl., 108, Kluwer Acad. Publ., Dordrecht, 2003, 3–20.
doi: 10.1007/978-94-017-0297-3_1. |
[8] |
C. Carstensen, S. Conti and A. Orlando,
Mixed analytical-numerical relaxation in finite single-slip crystal plasticity, Contin. Mech. Thermodyn., 20 (2008), 275-301.
doi: 10.1007/s00161-008-0082-0. |
[9] |
C. Carstensen and P. Plecháč,
Numerical analysis of compatible phase transitions in elastic solids, SIAM J. Numer. Anal., 37 (2000), 2061-2081.
doi: 10.1137/S0036142998337697. |
[10] |
C. Carstensen, Numerical analysis of microstructure, in Theory and Numerics of Differential Equations (Durham, 2000), Universitext, Springer, Berlin, 2001, 59–126.
doi: 10.1007/978-3-662-04354-7_2. |
[11] |
C. Carstensen, K. Hackl and A. Mielke,
Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), 299-317.
doi: 10.1098/rspa.2001.0864. |
[12] |
C. Carstensen and S. Müller,
Local stress regularity in scalar nonconvex variational problems, SIAM J. Math. Anal., 34 (2002), 495-509.
doi: 10.1137/S0036141001396436. |
[13] |
C. Carstensen and P. Plecháč,
Numerical solution of the scalar double-well problem allowing microstructure, Math. Comp., 66 (1997), 997-1026.
doi: 10.1090/S0025-5718-97-00849-1. |
[14] |
C. Carstensen and T. Roubíček,
Numerical approximation of Young measures in non-convex variational problems, Numer. Math., 84 (2000), 395-415.
doi: 10.1007/s002110050003. |
[15] |
M. Chipot,
Numerical analysis of oscillations in nonconvex problems, Numer. Math., 59 (1991), 747-767.
doi: 10.1007/BF01385808. |
[16] |
M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of Domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997), Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht, 1999,317–325.
doi: 10.1007/978-94-011-4738-5_38. |
[17] |
M. Cicalese and N. Fusco, A note on relaxation with constraints on the determinant, ESAIM: Control Optim. Calc. Var., 25 (2019), 15pp.
doi: 10.1051/cocv/2018030. |
[18] |
S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening, in Multiscale Materials Modeling, Fraunhofer IRB, Freiburg, 2006, 30–35. Google Scholar |
[19] |
S. Conti, A. DeSimone and G. Dolzmann,
Soft elastic response of stretched sheets of nematic elastomers: A numerical study, J. Mech. Phys. Solids, 50 (2002), 1431-1451.
doi: 10.1016/S0022-5096(01)00120-X. |
[20] |
S. Conti, G. Dolzmann and C. Klust,
Relaxation of a class of variational models in crystal plasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1735-1742.
doi: 10.1098/rspa.2008.0390. |
[21] |
S. Conti, G. Dolzmann and C. Kreisbeck,
Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity, SIAM J. Math. Anal., 43 (2011), 2337-2353.
doi: 10.1137/100810320. |
[22] |
S. Conti and G. Dolzmann,
Relaxation of a model energy for the cubic to tetragonal phase transformation in two dimensions, Math. Models. Methods Appl. Sci., 24 (2014), 2929-2942.
doi: 10.1142/S0218202514500419. |
[23] |
S. Conti and G. Dolzmann, Quasiconvex envelope for a model of finite elastoplasticity with one active slip system and linear hardening, Continuum Mech. Thermodyn. (2019).
doi: 10.1007/s00161-019-00825-8. |
[24] |
S. Conti and G. Dolzmann,
On the theory of relaxation in nonlinear elasticity with constraints on the determinant, Arch. Ration. Mech. Anal., 217 (2015), 413-437.
doi: 10.1007/s00205-014-0835-9. |
[25] |
S. Conti and G. Dolzmann,
Relaxation in crystal plasticity with three active slip systems, Contin. Mech. Thermodyn., 28 (2016), 1477-1494.
doi: 10.1007/s00161-015-0490-x. |
[26] |
S. Conti and G. Dolzmann,
An adaptive relaxation algorithm for multiscale problems and application to nematic elastomers, J. Mech. Phys. Solids, 113 (2018), 126-143.
doi: 10.1016/j.jmps.2018.02.001. |
[27] |
S. Conti and G. Dolzmann,
Numerical study of microstructures in single-slip finite elastoplasticity, J. Optim. Theory Appl., 184 (2020), 43-60.
doi: 10.1007/s10957-018-01460-0. |
[28] |
S. Conti, G. Dolzmann and C. Kreisbeck,
Relaxation of a model in finite plasticity with two slip systems, Math. Models Methods Appl. Sci., 23 (2013), 2111-2128.
doi: 10.1142/S0218202513500279. |
[29] |
S. Conti and F. Theil,
Single-slip elastoplastic microstructures, Arch. Ration. Mech. Anal., 178 (2005), 125-148.
doi: 10.1007/s00205-005-0371-8. |
[30] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-51440-1. |
[31] |
G. Dal Maso, An Introduction to {$\Gamma$-Convergence}, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[32] |
E. Davoli and G. A. Francfort,
A critical revisiting of finite elasto-plasticity, SIAM J. Math. Anal., 47 (2015), 526-565.
doi: 10.1137/140965090. |
[33] |
E. De Giorgi,
Sulla convergenza di alcune successioni d'integrali del tipo dell'area, Rend. Mat. (6), 8 (1975), 277-294.
|
[34] |
A. DeSimone and G. Dolzmann,
Macroscopic response of nematic elastomers via relaxation of a class of $\rm SO(3)$-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), 181-204.
doi: 10.1007/s002050100174. |
[35] |
E. D. Giorgi and T. Franzoni,
Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58 (1975), 842-850.
|
[36] |
K. Hackl, S. Heinz and A. Mielke,
A model for the evolution of laminates in finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 92 (2012), 888-909.
doi: 10.1002/zamm.201100155. |
[37] |
W. Han and B. D. Reddy, phPlasticity, in Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, 9, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5940-8. |
[38] |
E. Kröner,
Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 4 (1960), 273-334.
doi: 10.1007/BF00281393. |
[39] |
M. Kružík and T. Roubíček,
Optimization problems with concentration and oscillation effects: Relaxation theory and numerical approximation, Numer. Funct. Anal. Optim., 20 (1999), 511-530.
doi: 10.1080/01630569908816908. |
[40] |
G. Lauteri and S. Luckhaus, An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity, preprint, arXiv: 1608.06155. Google Scholar |
[41] |
H. Le Dret and A. Raoult,
The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1179-1192.
doi: 10.1017/S0308210500030456. |
[42] |
E. H. Lee,
Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6.
doi: 10.21236/AD0678483. |
[43] |
S. Luckhaus and L. Mugnai,
On a mesoscopic many-body {H}amiltonian describing elastic shears and dislocations, Contin. Mech. Thermodyn., 22 (2010), 251-290.
doi: 10.1007/s00161-010-0142-0. |
[44] |
S. Luckhaus and J. Wohlgemuth, Study of a model for reference-free plasticity, preprint, arXiv: 1408.1355. Google Scholar |
[45] |
M. Luskin, On the computation of crystalline microstructure, in Acta Numerica, 1996 , Acta Numer., 5, Cambridge Univ. Press, Cambridge, 1996, 191-257.
doi: 10.1017/S0962492900002658. |
[46] |
A. Mainik and A. Mielke,
Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248.
doi: 10.1007/s00332-008-9033-y. |
[47] |
C. Miehe,
On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity, Int. J. Plasticity, 10 (1994), 609-621.
doi: 10.1016/0749-6419(94)90025-6. |
[48] |
C. Miehe, M. Lambrecht and E. Gürses,
Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: Evolving deformation microstructures in finite plasticity, J. Mech. Phys. Solids, 52 (2004), 2725-2769.
doi: 10.1016/j.jmps.2004.05.011. |
[49] |
C. Miehe and E. Stein, A canonical model of multiplicative elasto-plasticity: Formulation and aspects of the numerical implementation, Europ. J. Mech. A/Solids, 11 (1992), 25-43. Google Scholar |
[50] |
C. Miehe and M. Lambrecht,
Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids, Internat. J. Numer. Methods Engrg., 58 (2003), 1-41.
doi: 10.1002/nme.726. |
[51] |
A. Mielke,
Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn., 15 (2003), 351-382.
doi: 10.1007/s00161-003-0120-x. |
[52] |
A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity, ZAMM Z. Angew. Math. Mech., 86 (2006), 233–250, .
doi: 10.1002/zamm.200510245. |
[53] |
A. Mielke, R. Rossi and G. Savaré,
Global existence results for viscoplasticity at finite strain, Arch. Ration. Mech. Anal., 227 (2018), 423-475.
doi: 10.1007/s00205-017-1164-6. |
[54] |
A. Mielke and T. Roubíček, Rate-independent systems, in Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[55] |
A. Mielke and T. Roubíček,
Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models Methods Appl. Sci., 26 (2016), 2203-2236.
doi: 10.1142/S0218202516500512. |
[56] |
A. Mielke and U. Stefanelli,
Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity, J. Eur. Math. Soc. (JEMS), 15 (2013), 923-948.
doi: 10.4171/JEMS/381. |
[57] |
A. Mielke, F. Theil and V. I. Levitas,
A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[58] |
J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, 271 (1970), 608-611. Google Scholar |
[59] |
J. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, Band, 130, Springer-Verlag New York, Inc., New York, 1966.
doi: 10.1007/978-3-540-69952-1. |
[60] |
S. Müller, Variational models for microstructure and phase transitions, in Calculus of Variations and Geometric Evolution Problems, Lecture Notes in Math., 1713, Springer, Berlin, 1999, 85–210.
doi: 10.1007/BFb0092670. |
[61] |
S. Müller and V. Šverák,
Convex integration with constraints and applications to phase transitions and partial differential equations, J. Eur. Math. Soc. (JEMS), 1 (1999), 393-442.
doi: 10.1007/s100970050012. |
[62] |
S. Müller, L. Scardia and C. I. Zeppieri, Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations, in Analysis and Computation of Microstructure in Finite Plasticity, Lect. Notes Appl. Comput. Mech., 78, Springer, Cham, 2015,175–204.
doi: 10.1007/978-3-319-18242-1_7. |
[63] |
M. Ortiz and E. A. Repetto,
Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462.
doi: 10.1016/S0022-5096(97)00096-3. |
[64] |
C. Reina and S. Conti,
Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of ${F} = {F}^e{F}^p$, J. Mech. Phys. Solids, 67 (2014), 40-61.
doi: 10.1016/j.jmps.2014.01.014. |
[65] |
C. Reina and S. Conti,
Incompressible inelasticity as an essential ingredient for the validity of the kinematic decomposition $F = F^eF^i$, J. Mech. Phys. Solids, 107 (2017), 322-342.
doi: 10.1016/j.jmps.2017.07.004. |
[66] |
T. Roubíček, Relaxation in Optimization Theory and Variational Calculus, De Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997.
doi: 10.1515/9783110811919. |
[67] |
T. Roubíček, Numerical techniques in relaxed optimization problems, in Robust Optimization-Directed Design, Nonconvex Optim. Appl., 81, Springer, New York, 2006,157–178.
doi: 10.1007/0-387-28654-3_8. |
[68] |
J. C. Simo,
A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation, Comput. Methods Appl. Mech. Engrg., 66 (1988), 199-219.
doi: 10.1016/0045-7825(88)90076-X. |
[69] |
J. C. Simo and M. Ortiz,
A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comput. Methods. Appl. Mech. Engrg., 49 (1985), 221-245.
doi: 10.1016/0045-7825(85)90061-1. |

slip systems | ||
no results | partial results [25] |
slip systems | ||
no results | partial results [25] |
[1] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[2] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[3] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104 |
[4] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[5] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[6] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[7] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[8] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[9] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[10] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[11] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[12] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[13] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[14] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[15] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[16] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[17] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[18] |
Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024 |
[19] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[20] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]