January  2021, 14(1): 41-55. doi: 10.3934/dcdss.2020303

Cahn-Hilliard equation with capillarity in actual deforming configurations

1. 

Mathematical Institute, Math.-Phys. Faculty, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

2. 

Institute of Thermomechanics,Czech Academy of Sciences, Dolejškova 5, CZ-182 00 Praha 8, Czech Republic

Dedicated to Alexander Mielke on the occasion of his sixtieth birthday.

Received  March 2019 Revised  August 2019 Published  March 2020

Fund Project: * This research has been supported from the grants 17-04301S (regarding the focus on the dissipative evolution of internal variables), 19-04956S (regarding the focus on the dynamic and nonlinear behaviour), and 19-29646L (especially regarding the focus on the large strains in materials science) of Czech Science Foundation, and from the FWF grant I 4052 N3 with BMBWF through the OeAD-WTZ project CZ04/2019, and also from the institutional support RVO: 61388998 (ČR).

The diffusion driven by the gradient of the chemical potential (by the Fick/Darcy law) in deforming continua at large strains is formulated in the reference configuration with both the Fick/Darcy law and the capillarity (i.e. concentration gradient) term considered at the actual configurations deforming in time. Static situations are analysed by the direct method. Evolution (dynamical) problems are treated by the Faedo-Galerkin method, the actual capillarity giving rise to various new terms as e.g. the Korteweg-like stress and analytical difficulties related to them. Some other models (namely plasticity at small elastic strains or damage) with gradients at an actual configuration allow for similar models and analysis.

Citation: Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303
References:
[1]

E. K. Agiasofitou and M. Lazar, Conservation and balance laws in linear elasticity of grade three, J. Elasticity, 94 (2009), 69-85.  doi: 10.1007/s10659-008-9185-x.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423-433.  doi: 10.1016/0001-6160(72)90037-5.  Google Scholar

[3]

L. Anand, A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60 (2012), 1983-2002.  doi: 10.1016/j.jmps.2012.08.001.  Google Scholar

[4]

P. AreiasE. Samaniego and T. Rabczuk, A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech., 57 (2016), 339-351.  doi: 10.1007/s00466-015-1235-1.  Google Scholar

[5]

A. Bedford, Hamilton's Principle in Continuum Mechanics, Pitman, Boston, 1985. doi: 10.13140/2.1.1603.4887.  Google Scholar

[6]

E. BonettiP. ColliW. DreyerG. GilardiG. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.  doi: 10.1016/S0167-2789(02)00373-1.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[8]

P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.  doi: 10.1007/BF00250807.  Google Scholar

[9]

H. Dal and C. Miehe, Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains, Comput. Mech., 55 (2015), 303-325.  doi: 10.1007/s00466-014-1102-5.  Google Scholar

[10]

C. Di LeoE. Rejovitzky and L. Anand, A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70 (2014), 1-29.  doi: 10.1016/j.jmps.2014.05.001.  Google Scholar

[11]

F. P. DudaA. C. Souza and E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), 515-529.  doi: 10.1016/j.jmps.2010.01.009.  Google Scholar

[12]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[13]

H. Garcke, On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331.  doi: 10.1017/S0308210500002419.  Google Scholar

[14]

S. Govindjee and J. C. Simo, Coupled stress-diffusion: Case II, J. Mech. Phys. Solids, 41 (1993), 863-887.  doi: 10.1016/0022-5096(93)90003-X.  Google Scholar

[15]

T. J. Healey and S. Krömer, Injective weak solutions in second-gradient nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 15 (2009), 863-871.  doi: 10.1051/cocv:2008050.  Google Scholar

[16]

C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes, Springer Spektrum, Wiesbaden, 2014. doi: 10.1007/978-3-658-05252-2.  Google Scholar

[17]

C. HeschA. J. GilR. OrtigosaM. DittmannC. Bilgen and et al., A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317 (2017), 649-683.  doi: 10.1016/j.cma.2016.12.035.  Google Scholar

[18]

W. Hong and X. Wang, A phase-field model for systems with coupled large deformation and mass transport, J. Mech. Phys. Solids, 61 (2013), 1281-1294.  doi: 10.1016/j.jmps.2013.03.001.  Google Scholar

[19]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Arch. Néerl. Sci. Exactes Nat., 6 (1901), 1-24.   Google Scholar

[20]

S. Krömer and T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, preprint, arXiv: 1904.02423, 2019. Google Scholar

[21]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019. doi: 10.1007/978-3-030-02065-1.  Google Scholar

[22]

F. C. Larché and J. W. Cahn, The effect of self–stress on diffusion in solids, Acta Metall., 30 (1982), 1835-1845.  doi: 10.1016/0001-6160(82)90023-2.  Google Scholar

[23]

V. I. Levitas, Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids, 70 (2014), 154-189.  doi: 10.1016/j.jmps.2014.05.013.  Google Scholar

[24]

C. MieheS. Mauthe and H. Ulmer, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids, Internat. J. Numer. Meth. Engrg., 99 (2014), 737-762.  doi: 10.1002/nme.4700.  Google Scholar

[25]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.  doi: 10.1088/0951-7715/24/4/016.  Google Scholar

[26]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[27]

A. Mielke and T. Roubíček, Rate-Independent Systems – Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[28]

A. Mielke and T. Roubíček, Thermoviscoelasticity in Kelvin-Voigt rheology at large strains, preprint, arXiv: 1903.11094, 2019. To appear: Arch. Ration. Mech. Anal.. Google Scholar

[29]

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Internat. J. Solids Structures, 1 (1965), 417-438.  doi: 10.1016/0020-7683(65)90006-5.  Google Scholar

[30]

A. Z. Palmer and T. J. Healey, Injectivity and self-contact in second-gradient nonlinear elasticity, Calc. Var. Partial Differential Equations, 56 (2017), 11pp. doi: 10.1007/s00526-017-1212-y.  Google Scholar

[31]

I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids, Discrete Contin. Dyn. Syst., 15 (2006), 1169-1191.  doi: 10.3934/dcds.2006.15.1169.  Google Scholar

[32]

I. Pawłow and W. M. Zajaczkowski, Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal., 32 (2008), 347-377.   Google Scholar

[33]

T. Roubíček, Variational methods for steady-state Darcy/Fick flow in swollen and poroelastic solids, ZAMM Z. Angew. Math. Mech., 97 (2017), 990-1002.  doi: 10.1002/zamm.201600269.  Google Scholar

[34]

T. Roubíček and U. Stefanelli, Thermodynamics of elastoplastic porous rocks at large strains towards earthquake modeling, SIAM J. Appl. Math., 78 (2018), 2597-2625.  doi: 10.1137/17M1137656.  Google Scholar

[35]

T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis, Z. Angew. Math. Phys., 69 (2018), Art. no. 55, 34pp. doi: 10.1007/s00033-018-0932-y.  Google Scholar

[36]

T. Roubíček and G. Tomassetti, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2313-2333.  doi: 10.3934/dcdsb.2014.19.2313.  Google Scholar

[37]

R. A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.  doi: 10.1007/BF00253945.  Google Scholar

[38]

T. WaffenschmidtC. PolindaraA. Menzel and S. Blanco, A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Engrg., 268 (2014), 801-842.  doi: 10.1016/j.cma.2013.10.013.  Google Scholar

[39]

V. V. Yashin and A. C. Balazs, Theoretical and computational modeling of self-oscillating polymer gels, J. Chem. Phys., 126 (2007). doi: 10.1063/1.2672951.  Google Scholar

[40]

V. V. Yashin, S. Suzuki, R. Yoshida and A. C. Balazs, Controlling the dynamic behavior of heterogeneous self-oscillating gels, J. Mater. Chem., 22 (2012). doi: 10.1039/c2jm32065g.  Google Scholar

show all references

References:
[1]

E. K. Agiasofitou and M. Lazar, Conservation and balance laws in linear elasticity of grade three, J. Elasticity, 94 (2009), 69-85.  doi: 10.1007/s10659-008-9185-x.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423-433.  doi: 10.1016/0001-6160(72)90037-5.  Google Scholar

[3]

L. Anand, A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60 (2012), 1983-2002.  doi: 10.1016/j.jmps.2012.08.001.  Google Scholar

[4]

P. AreiasE. Samaniego and T. Rabczuk, A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech., 57 (2016), 339-351.  doi: 10.1007/s00466-015-1235-1.  Google Scholar

[5]

A. Bedford, Hamilton's Principle in Continuum Mechanics, Pitman, Boston, 1985. doi: 10.13140/2.1.1603.4887.  Google Scholar

[6]

E. BonettiP. ColliW. DreyerG. GilardiG. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.  doi: 10.1016/S0167-2789(02)00373-1.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[8]

P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.  doi: 10.1007/BF00250807.  Google Scholar

[9]

H. Dal and C. Miehe, Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains, Comput. Mech., 55 (2015), 303-325.  doi: 10.1007/s00466-014-1102-5.  Google Scholar

[10]

C. Di LeoE. Rejovitzky and L. Anand, A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70 (2014), 1-29.  doi: 10.1016/j.jmps.2014.05.001.  Google Scholar

[11]

F. P. DudaA. C. Souza and E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), 515-529.  doi: 10.1016/j.jmps.2010.01.009.  Google Scholar

[12]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[13]

H. Garcke, On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331.  doi: 10.1017/S0308210500002419.  Google Scholar

[14]

S. Govindjee and J. C. Simo, Coupled stress-diffusion: Case II, J. Mech. Phys. Solids, 41 (1993), 863-887.  doi: 10.1016/0022-5096(93)90003-X.  Google Scholar

[15]

T. J. Healey and S. Krömer, Injective weak solutions in second-gradient nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 15 (2009), 863-871.  doi: 10.1051/cocv:2008050.  Google Scholar

[16]

C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes, Springer Spektrum, Wiesbaden, 2014. doi: 10.1007/978-3-658-05252-2.  Google Scholar

[17]

C. HeschA. J. GilR. OrtigosaM. DittmannC. Bilgen and et al., A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317 (2017), 649-683.  doi: 10.1016/j.cma.2016.12.035.  Google Scholar

[18]

W. Hong and X. Wang, A phase-field model for systems with coupled large deformation and mass transport, J. Mech. Phys. Solids, 61 (2013), 1281-1294.  doi: 10.1016/j.jmps.2013.03.001.  Google Scholar

[19]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Arch. Néerl. Sci. Exactes Nat., 6 (1901), 1-24.   Google Scholar

[20]

S. Krömer and T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, preprint, arXiv: 1904.02423, 2019. Google Scholar

[21]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019. doi: 10.1007/978-3-030-02065-1.  Google Scholar

[22]

F. C. Larché and J. W. Cahn, The effect of self–stress on diffusion in solids, Acta Metall., 30 (1982), 1835-1845.  doi: 10.1016/0001-6160(82)90023-2.  Google Scholar

[23]

V. I. Levitas, Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids, 70 (2014), 154-189.  doi: 10.1016/j.jmps.2014.05.013.  Google Scholar

[24]

C. MieheS. Mauthe and H. Ulmer, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids, Internat. J. Numer. Meth. Engrg., 99 (2014), 737-762.  doi: 10.1002/nme.4700.  Google Scholar

[25]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.  doi: 10.1088/0951-7715/24/4/016.  Google Scholar

[26]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[27]

A. Mielke and T. Roubíček, Rate-Independent Systems – Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[28]

A. Mielke and T. Roubíček, Thermoviscoelasticity in Kelvin-Voigt rheology at large strains, preprint, arXiv: 1903.11094, 2019. To appear: Arch. Ration. Mech. Anal.. Google Scholar

[29]

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Internat. J. Solids Structures, 1 (1965), 417-438.  doi: 10.1016/0020-7683(65)90006-5.  Google Scholar

[30]

A. Z. Palmer and T. J. Healey, Injectivity and self-contact in second-gradient nonlinear elasticity, Calc. Var. Partial Differential Equations, 56 (2017), 11pp. doi: 10.1007/s00526-017-1212-y.  Google Scholar

[31]

I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids, Discrete Contin. Dyn. Syst., 15 (2006), 1169-1191.  doi: 10.3934/dcds.2006.15.1169.  Google Scholar

[32]

I. Pawłow and W. M. Zajaczkowski, Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal., 32 (2008), 347-377.   Google Scholar

[33]

T. Roubíček, Variational methods for steady-state Darcy/Fick flow in swollen and poroelastic solids, ZAMM Z. Angew. Math. Mech., 97 (2017), 990-1002.  doi: 10.1002/zamm.201600269.  Google Scholar

[34]

T. Roubíček and U. Stefanelli, Thermodynamics of elastoplastic porous rocks at large strains towards earthquake modeling, SIAM J. Appl. Math., 78 (2018), 2597-2625.  doi: 10.1137/17M1137656.  Google Scholar

[35]

T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis, Z. Angew. Math. Phys., 69 (2018), Art. no. 55, 34pp. doi: 10.1007/s00033-018-0932-y.  Google Scholar

[36]

T. Roubíček and G. Tomassetti, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2313-2333.  doi: 10.3934/dcdsb.2014.19.2313.  Google Scholar

[37]

R. A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.  doi: 10.1007/BF00253945.  Google Scholar

[38]

T. WaffenschmidtC. PolindaraA. Menzel and S. Blanco, A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Engrg., 268 (2014), 801-842.  doi: 10.1016/j.cma.2013.10.013.  Google Scholar

[39]

V. V. Yashin and A. C. Balazs, Theoretical and computational modeling of self-oscillating polymer gels, J. Chem. Phys., 126 (2007). doi: 10.1063/1.2672951.  Google Scholar

[40]

V. V. Yashin, S. Suzuki, R. Yoshida and A. C. Balazs, Controlling the dynamic behavior of heterogeneous self-oscillating gels, J. Mater. Chem., 22 (2012). doi: 10.1039/c2jm32065g.  Google Scholar

[1]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[2]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[3]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[4]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[5]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[6]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[7]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[8]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[9]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[15]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[16]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[17]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[20]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (75)
  • HTML views (335)
  • Cited by (0)

Other articles
by authors

[Back to Top]