-
Previous Article
Viscoelasticity with limiting strain
- DCDS-S Home
- This Issue
-
Next Article
Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity
Cahn-Hilliard equation with capillarity in actual deforming configurations
1. | Mathematical Institute, Math.-Phys. Faculty, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic |
2. | Institute of Thermomechanics,Czech Academy of Sciences, Dolejškova 5, CZ-182 00 Praha 8, Czech Republic |
The diffusion driven by the gradient of the chemical potential (by the Fick/Darcy law) in deforming continua at large strains is formulated in the reference configuration with both the Fick/Darcy law and the capillarity (i.e. concentration gradient) term considered at the actual configurations deforming in time. Static situations are analysed by the direct method. Evolution (dynamical) problems are treated by the Faedo-Galerkin method, the actual capillarity giving rise to various new terms as e.g. the Korteweg-like stress and analytical difficulties related to them. Some other models (namely plasticity at small elastic strains or damage) with gradients at an actual configuration allow for similar models and analysis.
References:
[1] |
E. K. Agiasofitou and M. Lazar,
Conservation and balance laws in linear elasticity of grade three, J. Elasticity, 94 (2009), 69-85.
doi: 10.1007/s10659-008-9185-x. |
[2] |
S. M. Allen and J. W. Cahn,
Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423-433.
doi: 10.1016/0001-6160(72)90037-5. |
[3] |
L. Anand,
A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60 (2012), 1983-2002.
doi: 10.1016/j.jmps.2012.08.001. |
[4] |
P. Areias, E. Samaniego and T. Rabczuk,
A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech., 57 (2016), 339-351.
doi: 10.1007/s00466-015-1235-1. |
[5] |
A. Bedford, Hamilton's Principle in Continuum Mechanics, Pitman, Boston, 1985.
doi: 10.13140/2.1.1603.4887. |
[6] |
E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels,
On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.
doi: 10.1016/S0167-2789(02)00373-1. |
[7] |
J. W. Cahn and J. E. Hilliard, Free energy of a uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. Google Scholar |
[8] |
P. G. Ciarlet and J. Nečas,
Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.
doi: 10.1007/BF00250807. |
[9] |
H. Dal and C. Miehe,
Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains, Comput. Mech., 55 (2015), 303-325.
doi: 10.1007/s00466-014-1102-5. |
[10] |
C. Di Leo, E. Rejovitzky and L. Anand,
A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70 (2014), 1-29.
doi: 10.1016/j.jmps.2014.05.001. |
[11] |
F. P. Duda, A. C. Souza and E. Fried,
A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), 515-529.
doi: 10.1016/j.jmps.2010.01.009. |
[12] |
E. Fried and M. E. Gurtin,
Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.
doi: 10.1007/s00205-006-0015-7. |
[13] |
H. Garcke,
On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331.
doi: 10.1017/S0308210500002419. |
[14] |
S. Govindjee and J. C. Simo,
Coupled stress-diffusion: Case II, J. Mech. Phys. Solids, 41 (1993), 863-887.
doi: 10.1016/0022-5096(93)90003-X. |
[15] |
T. J. Healey and S. Krömer,
Injective weak solutions in second-gradient nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 15 (2009), 863-871.
doi: 10.1051/cocv:2008050. |
[16] |
C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes, Springer Spektrum, Wiesbaden, 2014.
doi: 10.1007/978-3-658-05252-2. |
[17] |
C. Hesch, A. J. Gil, R. Ortigosa, M. Dittmann, C. Bilgen and et al.,
A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317 (2017), 649-683.
doi: 10.1016/j.cma.2016.12.035. |
[18] |
W. Hong and X. Wang,
A phase-field model for systems with coupled large deformation and mass transport, J. Mech. Phys. Solids, 61 (2013), 1281-1294.
doi: 10.1016/j.jmps.2013.03.001. |
[19] |
D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Arch. Néerl. Sci. Exactes Nat., 6 (1901), 1-24. Google Scholar |
[20] |
S. Krömer and T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, preprint, arXiv: 1904.02423, 2019. Google Scholar |
[21] |
M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019.
doi: 10.1007/978-3-030-02065-1. |
[22] |
F. C. Larché and J. W. Cahn,
The effect of self–stress on diffusion in solids, Acta Metall., 30 (1982), 1835-1845.
doi: 10.1016/0001-6160(82)90023-2. |
[23] |
V. I. Levitas,
Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids, 70 (2014), 154-189.
doi: 10.1016/j.jmps.2014.05.013. |
[24] |
C. Miehe, S. Mauthe and H. Ulmer,
Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids, Internat. J. Numer. Meth. Engrg., 99 (2014), 737-762.
doi: 10.1002/nme.4700. |
[25] |
A. Mielke,
A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.
doi: 10.1088/0951-7715/24/4/016. |
[26] |
A. Mielke,
Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.
doi: 10.3934/dcdss.2013.6.479. |
[27] |
A. Mielke and T. Roubíček, Rate-Independent Systems – Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[28] |
A. Mielke and T. Roubíček, Thermoviscoelasticity in Kelvin-Voigt rheology at large strains, preprint, arXiv: 1903.11094, 2019. To appear: Arch. Ration. Mech. Anal.. Google Scholar |
[29] |
R. D. Mindlin,
Second gradient of strain and surface-tension in linear elasticity, Internat. J. Solids Structures, 1 (1965), 417-438.
doi: 10.1016/0020-7683(65)90006-5. |
[30] |
A. Z. Palmer and T. J. Healey, Injectivity and self-contact in second-gradient nonlinear elasticity, Calc. Var. Partial Differential Equations, 56 (2017), 11pp.
doi: 10.1007/s00526-017-1212-y. |
[31] |
I. Pawłow,
Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids, Discrete Contin. Dyn. Syst., 15 (2006), 1169-1191.
doi: 10.3934/dcds.2006.15.1169. |
[32] |
I. Pawłow and W. M. Zajaczkowski,
Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal., 32 (2008), 347-377.
|
[33] |
T. Roubíček,
Variational methods for steady-state Darcy/Fick flow in swollen and poroelastic solids, ZAMM Z. Angew. Math. Mech., 97 (2017), 990-1002.
doi: 10.1002/zamm.201600269. |
[34] |
T. Roubíček and U. Stefanelli,
Thermodynamics of elastoplastic porous rocks at large strains towards earthquake modeling, SIAM J. Appl. Math., 78 (2018), 2597-2625.
doi: 10.1137/17M1137656. |
[35] |
T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis, Z. Angew. Math. Phys., 69 (2018), Art. no. 55, 34pp.
doi: 10.1007/s00033-018-0932-y. |
[36] |
T. Roubíček and G. Tomassetti,
Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2313-2333.
doi: 10.3934/dcdsb.2014.19.2313. |
[37] |
R. A. Toupin,
Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.
doi: 10.1007/BF00253945. |
[38] |
T. Waffenschmidt, C. Polindara, A. Menzel and S. Blanco,
A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Engrg., 268 (2014), 801-842.
doi: 10.1016/j.cma.2013.10.013. |
[39] |
V. V. Yashin and A. C. Balazs, Theoretical and computational modeling of self-oscillating polymer gels, J. Chem. Phys., 126 (2007).
doi: 10.1063/1.2672951. |
[40] |
V. V. Yashin, S. Suzuki, R. Yoshida and A. C. Balazs, Controlling the dynamic behavior of heterogeneous self-oscillating gels, J. Mater. Chem., 22 (2012).
doi: 10.1039/c2jm32065g. |
show all references
References:
[1] |
E. K. Agiasofitou and M. Lazar,
Conservation and balance laws in linear elasticity of grade three, J. Elasticity, 94 (2009), 69-85.
doi: 10.1007/s10659-008-9185-x. |
[2] |
S. M. Allen and J. W. Cahn,
Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423-433.
doi: 10.1016/0001-6160(72)90037-5. |
[3] |
L. Anand,
A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60 (2012), 1983-2002.
doi: 10.1016/j.jmps.2012.08.001. |
[4] |
P. Areias, E. Samaniego and T. Rabczuk,
A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech., 57 (2016), 339-351.
doi: 10.1007/s00466-015-1235-1. |
[5] |
A. Bedford, Hamilton's Principle in Continuum Mechanics, Pitman, Boston, 1985.
doi: 10.13140/2.1.1603.4887. |
[6] |
E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels,
On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.
doi: 10.1016/S0167-2789(02)00373-1. |
[7] |
J. W. Cahn and J. E. Hilliard, Free energy of a uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. Google Scholar |
[8] |
P. G. Ciarlet and J. Nečas,
Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.
doi: 10.1007/BF00250807. |
[9] |
H. Dal and C. Miehe,
Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains, Comput. Mech., 55 (2015), 303-325.
doi: 10.1007/s00466-014-1102-5. |
[10] |
C. Di Leo, E. Rejovitzky and L. Anand,
A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70 (2014), 1-29.
doi: 10.1016/j.jmps.2014.05.001. |
[11] |
F. P. Duda, A. C. Souza and E. Fried,
A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), 515-529.
doi: 10.1016/j.jmps.2010.01.009. |
[12] |
E. Fried and M. E. Gurtin,
Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.
doi: 10.1007/s00205-006-0015-7. |
[13] |
H. Garcke,
On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331.
doi: 10.1017/S0308210500002419. |
[14] |
S. Govindjee and J. C. Simo,
Coupled stress-diffusion: Case II, J. Mech. Phys. Solids, 41 (1993), 863-887.
doi: 10.1016/0022-5096(93)90003-X. |
[15] |
T. J. Healey and S. Krömer,
Injective weak solutions in second-gradient nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 15 (2009), 863-871.
doi: 10.1051/cocv:2008050. |
[16] |
C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes, Springer Spektrum, Wiesbaden, 2014.
doi: 10.1007/978-3-658-05252-2. |
[17] |
C. Hesch, A. J. Gil, R. Ortigosa, M. Dittmann, C. Bilgen and et al.,
A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317 (2017), 649-683.
doi: 10.1016/j.cma.2016.12.035. |
[18] |
W. Hong and X. Wang,
A phase-field model for systems with coupled large deformation and mass transport, J. Mech. Phys. Solids, 61 (2013), 1281-1294.
doi: 10.1016/j.jmps.2013.03.001. |
[19] |
D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Arch. Néerl. Sci. Exactes Nat., 6 (1901), 1-24. Google Scholar |
[20] |
S. Krömer and T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, preprint, arXiv: 1904.02423, 2019. Google Scholar |
[21] |
M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019.
doi: 10.1007/978-3-030-02065-1. |
[22] |
F. C. Larché and J. W. Cahn,
The effect of self–stress on diffusion in solids, Acta Metall., 30 (1982), 1835-1845.
doi: 10.1016/0001-6160(82)90023-2. |
[23] |
V. I. Levitas,
Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids, 70 (2014), 154-189.
doi: 10.1016/j.jmps.2014.05.013. |
[24] |
C. Miehe, S. Mauthe and H. Ulmer,
Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids, Internat. J. Numer. Meth. Engrg., 99 (2014), 737-762.
doi: 10.1002/nme.4700. |
[25] |
A. Mielke,
A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.
doi: 10.1088/0951-7715/24/4/016. |
[26] |
A. Mielke,
Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.
doi: 10.3934/dcdss.2013.6.479. |
[27] |
A. Mielke and T. Roubíček, Rate-Independent Systems – Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[28] |
A. Mielke and T. Roubíček, Thermoviscoelasticity in Kelvin-Voigt rheology at large strains, preprint, arXiv: 1903.11094, 2019. To appear: Arch. Ration. Mech. Anal.. Google Scholar |
[29] |
R. D. Mindlin,
Second gradient of strain and surface-tension in linear elasticity, Internat. J. Solids Structures, 1 (1965), 417-438.
doi: 10.1016/0020-7683(65)90006-5. |
[30] |
A. Z. Palmer and T. J. Healey, Injectivity and self-contact in second-gradient nonlinear elasticity, Calc. Var. Partial Differential Equations, 56 (2017), 11pp.
doi: 10.1007/s00526-017-1212-y. |
[31] |
I. Pawłow,
Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids, Discrete Contin. Dyn. Syst., 15 (2006), 1169-1191.
doi: 10.3934/dcds.2006.15.1169. |
[32] |
I. Pawłow and W. M. Zajaczkowski,
Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal., 32 (2008), 347-377.
|
[33] |
T. Roubíček,
Variational methods for steady-state Darcy/Fick flow in swollen and poroelastic solids, ZAMM Z. Angew. Math. Mech., 97 (2017), 990-1002.
doi: 10.1002/zamm.201600269. |
[34] |
T. Roubíček and U. Stefanelli,
Thermodynamics of elastoplastic porous rocks at large strains towards earthquake modeling, SIAM J. Appl. Math., 78 (2018), 2597-2625.
doi: 10.1137/17M1137656. |
[35] |
T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis, Z. Angew. Math. Phys., 69 (2018), Art. no. 55, 34pp.
doi: 10.1007/s00033-018-0932-y. |
[36] |
T. Roubíček and G. Tomassetti,
Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2313-2333.
doi: 10.3934/dcdsb.2014.19.2313. |
[37] |
R. A. Toupin,
Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.
doi: 10.1007/BF00253945. |
[38] |
T. Waffenschmidt, C. Polindara, A. Menzel and S. Blanco,
A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Engrg., 268 (2014), 801-842.
doi: 10.1016/j.cma.2013.10.013. |
[39] |
V. V. Yashin and A. C. Balazs, Theoretical and computational modeling of self-oscillating polymer gels, J. Chem. Phys., 126 (2007).
doi: 10.1063/1.2672951. |
[40] |
V. V. Yashin, S. Suzuki, R. Yoshida and A. C. Balazs, Controlling the dynamic behavior of heterogeneous self-oscillating gels, J. Mater. Chem., 22 (2012).
doi: 10.1039/c2jm32065g. |
[1] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[2] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[3] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[4] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[5] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[6] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[7] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[8] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[9] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[10] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[11] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[12] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[13] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[14] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[15] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[16] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[17] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[18] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[19] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[20] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]