doi: 10.3934/dcdss.2020303

Cahn-Hilliard equation with capillarity in actual deforming configurations

1. 

Mathematical Institute, Math.-Phys. Faculty, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

2. 

Institute of Thermomechanics,Czech Academy of Sciences, Dolejškova 5, CZ-182 00 Praha 8, Czech Republic

Dedicated to Alexander Mielke on the occasion of his sixtieth birthday.

Received  March 2019 Revised  August 2019 Published  March 2020

Fund Project: * This research has been supported from the grants 17-04301S (regarding the focus on the dissipative evolution of internal variables), 19-04956S (regarding the focus on the dynamic and nonlinear behaviour), and 19-29646L (especially regarding the focus on the large strains in materials science) of Czech Science Foundation, and from the FWF grant I 4052 N3 with BMBWF through the OeAD-WTZ project CZ04/2019, and also from the institutional support RVO: 61388998 (ČR).

The diffusion driven by the gradient of the chemical potential (by the Fick/Darcy law) in deforming continua at large strains is formulated in the reference configuration with both the Fick/Darcy law and the capillarity (i.e. concentration gradient) term considered at the actual configurations deforming in time. Static situations are analysed by the direct method. Evolution (dynamical) problems are treated by the Faedo-Galerkin method, the actual capillarity giving rise to various new terms as e.g. the Korteweg-like stress and analytical difficulties related to them. Some other models (namely plasticity at small elastic strains or damage) with gradients at an actual configuration allow for similar models and analysis.

Citation: Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020303
References:
[1]

E. K. Agiasofitou and M. Lazar, Conservation and balance laws in linear elasticity of grade three, J. Elasticity, 94 (2009), 69-85.  doi: 10.1007/s10659-008-9185-x.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423-433.  doi: 10.1016/0001-6160(72)90037-5.  Google Scholar

[3]

L. Anand, A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60 (2012), 1983-2002.  doi: 10.1016/j.jmps.2012.08.001.  Google Scholar

[4]

P. AreiasE. Samaniego and T. Rabczuk, A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech., 57 (2016), 339-351.  doi: 10.1007/s00466-015-1235-1.  Google Scholar

[5]

A. Bedford, Hamilton's Principle in Continuum Mechanics, Pitman, Boston, 1985. doi: 10.13140/2.1.1603.4887.  Google Scholar

[6]

E. BonettiP. ColliW. DreyerG. GilardiG. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.  doi: 10.1016/S0167-2789(02)00373-1.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[8]

P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.  doi: 10.1007/BF00250807.  Google Scholar

[9]

H. Dal and C. Miehe, Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains, Comput. Mech., 55 (2015), 303-325.  doi: 10.1007/s00466-014-1102-5.  Google Scholar

[10]

C. Di LeoE. Rejovitzky and L. Anand, A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70 (2014), 1-29.  doi: 10.1016/j.jmps.2014.05.001.  Google Scholar

[11]

F. P. DudaA. C. Souza and E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), 515-529.  doi: 10.1016/j.jmps.2010.01.009.  Google Scholar

[12]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[13]

H. Garcke, On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331.  doi: 10.1017/S0308210500002419.  Google Scholar

[14]

S. Govindjee and J. C. Simo, Coupled stress-diffusion: Case II, J. Mech. Phys. Solids, 41 (1993), 863-887.  doi: 10.1016/0022-5096(93)90003-X.  Google Scholar

[15]

T. J. Healey and S. Krömer, Injective weak solutions in second-gradient nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 15 (2009), 863-871.  doi: 10.1051/cocv:2008050.  Google Scholar

[16]

C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes, Springer Spektrum, Wiesbaden, 2014. doi: 10.1007/978-3-658-05252-2.  Google Scholar

[17]

C. HeschA. J. GilR. OrtigosaM. DittmannC. Bilgen and et al., A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317 (2017), 649-683.  doi: 10.1016/j.cma.2016.12.035.  Google Scholar

[18]

W. Hong and X. Wang, A phase-field model for systems with coupled large deformation and mass transport, J. Mech. Phys. Solids, 61 (2013), 1281-1294.  doi: 10.1016/j.jmps.2013.03.001.  Google Scholar

[19]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Arch. Néerl. Sci. Exactes Nat., 6 (1901), 1-24.   Google Scholar

[20]

S. Krömer and T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, preprint, arXiv: 1904.02423, 2019. Google Scholar

[21]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019. doi: 10.1007/978-3-030-02065-1.  Google Scholar

[22]

F. C. Larché and J. W. Cahn, The effect of self–stress on diffusion in solids, Acta Metall., 30 (1982), 1835-1845.  doi: 10.1016/0001-6160(82)90023-2.  Google Scholar

[23]

V. I. Levitas, Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids, 70 (2014), 154-189.  doi: 10.1016/j.jmps.2014.05.013.  Google Scholar

[24]

C. MieheS. Mauthe and H. Ulmer, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids, Internat. J. Numer. Meth. Engrg., 99 (2014), 737-762.  doi: 10.1002/nme.4700.  Google Scholar

[25]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.  doi: 10.1088/0951-7715/24/4/016.  Google Scholar

[26]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[27]

A. Mielke and T. Roubíček, Rate-Independent Systems – Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[28]

A. Mielke and T. Roubíček, Thermoviscoelasticity in Kelvin-Voigt rheology at large strains, preprint, arXiv: 1903.11094, 2019. To appear: Arch. Ration. Mech. Anal.. Google Scholar

[29]

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Internat. J. Solids Structures, 1 (1965), 417-438.  doi: 10.1016/0020-7683(65)90006-5.  Google Scholar

[30]

A. Z. Palmer and T. J. Healey, Injectivity and self-contact in second-gradient nonlinear elasticity, Calc. Var. Partial Differential Equations, 56 (2017), 11pp. doi: 10.1007/s00526-017-1212-y.  Google Scholar

[31]

I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids, Discrete Contin. Dyn. Syst., 15 (2006), 1169-1191.  doi: 10.3934/dcds.2006.15.1169.  Google Scholar

[32]

I. Pawłow and W. M. Zajaczkowski, Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal., 32 (2008), 347-377.   Google Scholar

[33]

T. Roubíček, Variational methods for steady-state Darcy/Fick flow in swollen and poroelastic solids, ZAMM Z. Angew. Math. Mech., 97 (2017), 990-1002.  doi: 10.1002/zamm.201600269.  Google Scholar

[34]

T. Roubíček and U. Stefanelli, Thermodynamics of elastoplastic porous rocks at large strains towards earthquake modeling, SIAM J. Appl. Math., 78 (2018), 2597-2625.  doi: 10.1137/17M1137656.  Google Scholar

[35]

T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis, Z. Angew. Math. Phys., 69 (2018), Art. no. 55, 34pp. doi: 10.1007/s00033-018-0932-y.  Google Scholar

[36]

T. Roubíček and G. Tomassetti, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2313-2333.  doi: 10.3934/dcdsb.2014.19.2313.  Google Scholar

[37]

R. A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.  doi: 10.1007/BF00253945.  Google Scholar

[38]

T. WaffenschmidtC. PolindaraA. Menzel and S. Blanco, A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Engrg., 268 (2014), 801-842.  doi: 10.1016/j.cma.2013.10.013.  Google Scholar

[39]

V. V. Yashin and A. C. Balazs, Theoretical and computational modeling of self-oscillating polymer gels, J. Chem. Phys., 126 (2007). doi: 10.1063/1.2672951.  Google Scholar

[40]

V. V. Yashin, S. Suzuki, R. Yoshida and A. C. Balazs, Controlling the dynamic behavior of heterogeneous self-oscillating gels, J. Mater. Chem., 22 (2012). doi: 10.1039/c2jm32065g.  Google Scholar

show all references

References:
[1]

E. K. Agiasofitou and M. Lazar, Conservation and balance laws in linear elasticity of grade three, J. Elasticity, 94 (2009), 69-85.  doi: 10.1007/s10659-008-9185-x.  Google Scholar

[2]

S. M. Allen and J. W. Cahn, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20 (1972), 423-433.  doi: 10.1016/0001-6160(72)90037-5.  Google Scholar

[3]

L. Anand, A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60 (2012), 1983-2002.  doi: 10.1016/j.jmps.2012.08.001.  Google Scholar

[4]

P. AreiasE. Samaniego and T. Rabczuk, A staggered approach for the coupling of Cahn-Hilliard type diffusion and finite strain elasticity, Comput. Mech., 57 (2016), 339-351.  doi: 10.1007/s00466-015-1235-1.  Google Scholar

[5]

A. Bedford, Hamilton's Principle in Continuum Mechanics, Pitman, Boston, 1985. doi: 10.13140/2.1.1603.4887.  Google Scholar

[6]

E. BonettiP. ColliW. DreyerG. GilardiG. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D, 165 (2002), 48-65.  doi: 10.1016/S0167-2789(02)00373-1.  Google Scholar

[7]

J. W. Cahn and J. E. Hilliard, Free energy of a uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   Google Scholar

[8]

P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal., 97 (1987), 171-188.  doi: 10.1007/BF00250807.  Google Scholar

[9]

H. Dal and C. Miehe, Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains, Comput. Mech., 55 (2015), 303-325.  doi: 10.1007/s00466-014-1102-5.  Google Scholar

[10]

C. Di LeoE. Rejovitzky and L. Anand, A Cahn-Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials, J. Mech. Phys. Solids, 70 (2014), 1-29.  doi: 10.1016/j.jmps.2014.05.001.  Google Scholar

[11]

F. P. DudaA. C. Souza and E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58 (2010), 515-529.  doi: 10.1016/j.jmps.2010.01.009.  Google Scholar

[12]

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Ration. Mech. Anal., 182 (2006), 513-554.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[13]

H. Garcke, On Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331.  doi: 10.1017/S0308210500002419.  Google Scholar

[14]

S. Govindjee and J. C. Simo, Coupled stress-diffusion: Case II, J. Mech. Phys. Solids, 41 (1993), 863-887.  doi: 10.1016/0022-5096(93)90003-X.  Google Scholar

[15]

T. J. Healey and S. Krömer, Injective weak solutions in second-gradient nonlinear elasticity, ESAIM: Control Optim. Calc. Var., 15 (2009), 863-871.  doi: 10.1051/cocv:2008050.  Google Scholar

[16]

C. Heinemann and C. Kraus, Phase Separation Coupled with Damage Processes, Springer Spektrum, Wiesbaden, 2014. doi: 10.1007/978-3-658-05252-2.  Google Scholar

[17]

C. HeschA. J. GilR. OrtigosaM. DittmannC. Bilgen and et al., A framework for polyconvex large strain phase-field methods to fracture, Comput. Methods Appl. Mech. Engrg., 317 (2017), 649-683.  doi: 10.1016/j.cma.2016.12.035.  Google Scholar

[18]

W. Hong and X. Wang, A phase-field model for systems with coupled large deformation and mass transport, J. Mech. Phys. Solids, 61 (2013), 1281-1294.  doi: 10.1016/j.jmps.2013.03.001.  Google Scholar

[19]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fuides si lón tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité, Arch. Néerl. Sci. Exactes Nat., 6 (1901), 1-24.   Google Scholar

[20]

S. Krömer and T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, preprint, arXiv: 1904.02423, 2019. Google Scholar

[21]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019. doi: 10.1007/978-3-030-02065-1.  Google Scholar

[22]

F. C. Larché and J. W. Cahn, The effect of self–stress on diffusion in solids, Acta Metall., 30 (1982), 1835-1845.  doi: 10.1016/0001-6160(82)90023-2.  Google Scholar

[23]

V. I. Levitas, Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids, 70 (2014), 154-189.  doi: 10.1016/j.jmps.2014.05.013.  Google Scholar

[24]

C. MieheS. Mauthe and H. Ulmer, Formulation and numerical exploitation of mixed variational principles for coupled problems of Cahn-Hilliard-type and standard diffusion in elastic solids, Internat. J. Numer. Meth. Engrg., 99 (2014), 737-762.  doi: 10.1002/nme.4700.  Google Scholar

[25]

A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.  doi: 10.1088/0951-7715/24/4/016.  Google Scholar

[26]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[27]

A. Mielke and T. Roubíček, Rate-Independent Systems – Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[28]

A. Mielke and T. Roubíček, Thermoviscoelasticity in Kelvin-Voigt rheology at large strains, preprint, arXiv: 1903.11094, 2019. To appear: Arch. Ration. Mech. Anal.. Google Scholar

[29]

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Internat. J. Solids Structures, 1 (1965), 417-438.  doi: 10.1016/0020-7683(65)90006-5.  Google Scholar

[30]

A. Z. Palmer and T. J. Healey, Injectivity and self-contact in second-gradient nonlinear elasticity, Calc. Var. Partial Differential Equations, 56 (2017), 11pp. doi: 10.1007/s00526-017-1212-y.  Google Scholar

[31]

I. Pawłow, Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids, Discrete Contin. Dyn. Syst., 15 (2006), 1169-1191.  doi: 10.3934/dcds.2006.15.1169.  Google Scholar

[32]

I. Pawłow and W. M. Zajaczkowski, Weak solutions to 3-D Cahn-Hilliard system in elastic solids, Topol. Methods Nonlinear Anal., 32 (2008), 347-377.   Google Scholar

[33]

T. Roubíček, Variational methods for steady-state Darcy/Fick flow in swollen and poroelastic solids, ZAMM Z. Angew. Math. Mech., 97 (2017), 990-1002.  doi: 10.1002/zamm.201600269.  Google Scholar

[34]

T. Roubíček and U. Stefanelli, Thermodynamics of elastoplastic porous rocks at large strains towards earthquake modeling, SIAM J. Appl. Math., 78 (2018), 2597-2625.  doi: 10.1137/17M1137656.  Google Scholar

[35]

T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis, Z. Angew. Math. Phys., 69 (2018), Art. no. 55, 34pp. doi: 10.1007/s00033-018-0932-y.  Google Scholar

[36]

T. Roubíček and G. Tomassetti, Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2313-2333.  doi: 10.3934/dcdsb.2014.19.2313.  Google Scholar

[37]

R. A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.  doi: 10.1007/BF00253945.  Google Scholar

[38]

T. WaffenschmidtC. PolindaraA. Menzel and S. Blanco, A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials, Comput. Methods Appl. Mech. Engrg., 268 (2014), 801-842.  doi: 10.1016/j.cma.2013.10.013.  Google Scholar

[39]

V. V. Yashin and A. C. Balazs, Theoretical and computational modeling of self-oscillating polymer gels, J. Chem. Phys., 126 (2007). doi: 10.1063/1.2672951.  Google Scholar

[40]

V. V. Yashin, S. Suzuki, R. Yoshida and A. C. Balazs, Controlling the dynamic behavior of heterogeneous self-oscillating gels, J. Mater. Chem., 22 (2012). doi: 10.1039/c2jm32065g.  Google Scholar

[1]

David G. Ebin. Global solutions of the equations of elastodynamics for incompressible materials. Electronic Research Announcements, 1996, 2: 50-59.

[2]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

[3]

Rana D. Parshad. Asymptotic behaviour of the Darcy-Boussinesq system at large Darcy-Prandtl number. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1441-1469. doi: 10.3934/dcds.2010.26.1441

[4]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[5]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[6]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[7]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[8]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[9]

Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371

[10]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[11]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[12]

Esther S. Daus, Shi Jin, Liu Liu. Spectral convergence of the stochastic galerkin approximation to the boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinetic & Related Models, 2019, 12 (4) : 909-922. doi: 10.3934/krm.2019034

[13]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[14]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[15]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[16]

Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042

[17]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[18]

Christian Heinemann, Christiane Kraus. Existence of weak solutions for a PDE system describing phase separation and damage processes including inertial effects. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2565-2590. doi: 10.3934/dcds.2015.35.2565

[19]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[20]

H. Thomas Banks, Kidist Bekele-Maxwell, Lorena Bociu, Marcella Noorman, Giovanna Guidoboni. Local sensitivity via the complex-step derivative approximation for 1D Poro-Elastic and Poro-Visco-Elastic models. Mathematical Control & Related Fields, 2019, 9 (4) : 623-642. doi: 10.3934/mcrf.2019044

2018 Impact Factor: 0.545

Article outline

[Back to Top]